Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2012 (2012), Article ID 732634, 10 pages
http://dx.doi.org/10.1155/2012/732634
Research Article

Dietary Cholesterol Concentration and Duration Degrade Long-Term Memory of Classical Conditioning of the Rabbit’s Nictitating Membrane Response

1Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26506, USA
2Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9302, Morgantown, WV 26506, USA
3Department of Neurobiology and Anatomy, West Virginia University, Morgantown, WV 26506, USA

Received 11 January 2012; Accepted 7 February 2012

Academic Editor: Diana S. Woodruff-Pak

Copyright © 2012 Bernard G. Schreurs et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. P. Prasanthi, B. Dasari, G. Marwarha et al., “Caffeine protects against oxidative stress and Alzheimer's disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet,” Free Radical Biology and Medicine, vol. 49, no. 7, pp. 1212–1220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. P. Jaya Prasanthi, E. Schommer, S. Thomasson, A. Thompson, G. Feist, and O. Ghribi, “Regulation of β-amyloid levels in the brain of cholesterol-fed rabbit, a model system for sporadic Alzheimer's disease,” Mechanisms of Ageing and Development, vol. 129, no. 11, pp. 649–655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. S. Woodruff-Pak, “Animal models of Alzheimer's disease: therapeutic implications,” Journal of Alzheimer's Disease, vol. 15, no. 4, pp. 507–521, 2008. View at Google Scholar · View at Scopus
  4. D. S. Woodruff-Pak, A. Agelan, and L. D. Valle, “A rabbit model of Alzheimer's disease: valid at neuropathological, cognitive, and therapeutic levels,” Journal of Alzheimer's Disease, vol. 11, no. 3, pp. 371–383, 2007. View at Google Scholar · View at Scopus
  5. O. Ghribi, M. Y. Golovko, B. Larsen, M. Schrag, and E. J. Murphy, “Deposition of iron and β-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets,” Journal of Neurochemistry, vol. 99, no. 2, pp. 438–449, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. D. L. Sparks and B. G. Schreurs, “Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 11065–11069, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Zatta, P. Zambenedetti, M. P. Stella, and F. Licastro, “Astrocytosis, microgliosis, metallothionein-I-II and amyloid expression in high cholesterol-fed rabbits,” Journal of Alzheimer's Disease, vol. 4, no. 1, pp. 1–9, 2002. View at Google Scholar · View at Scopus
  8. D. L. Sparks, Y. M. Kuo, A. Roher, T. Martin, and R. J. Lukas, “Alterations of Alzheimer's disease in the cholesterol-fed rabbit, including vascular inflammation. Preliminary observations,” Annals of the New York Academy of Sciences, vol. 903, pp. 335–344, 2000. View at Google Scholar · View at Scopus
  9. D. L. Sparks, “Dietary cholesterol induces Alzheimer-like β-amyloid immunoreactivity in rabbit brain,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 7, no. 3, pp. 255–266, 1997. View at Google Scholar · View at Scopus
  10. D. L. Sparks, S. W. Scheff, J. C. Hunsaker, H. Liu, T. Landers, and D. R. Gross, “Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol,” Experimental Neurology, vol. 126, no. 1, pp. 88–94, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. S. K. Lemieux, C. A. Smith-Bell, J. R. Wells et al., “Neurovascular changes measured by time-of-flight MR angiography in cholesterol-fed rabbits with cortical amyloid β-peptide accumulation,” Journal of Magnetic Resonance Imaging, vol. 32, no. 2, pp. 306–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Deci, S. K. Lemieux, C. A. Smith-Bell, D. L. Sparks, and B. G. Schreurs, “Cholesterol increases ventricular volume in a rabbit model of Alzheimer's Disease,” Journal of Alzheimer's Disease, vol. 29, no. 2, pp. 283–292, 2012. View at Google Scholar
  13. C. R. Hooijmans, C. E. E. M. Van der Zee, P. J. Dederen et al., “DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in APPSWE/PS1dE9 mice,” Neurobiology of Disease, vol. 33, no. 3, pp. 482–498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Lefterov, N. F. Fitz, A. Cronican, P. Lefterov, M. Staufenbiel, and R. Koldamova, “Memory deficits in APP23/Abca1+/- mice correlate with the level of Aβ oligomers,” ASN Neuro, vol. 1, no. 2, Article ID e00006, pp. 65–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. C. Granholm, H. A. Bimonte-Nelson, A. B. Moore, M. E. Nelson, L. R. Freeman, and K. Sambamurti, “Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat,” Journal of Alzheimer's Disease, vol. 14, no. 2, pp. 133–145, 2008. View at Google Scholar · View at Scopus
  16. V. Micale, G. Scapagnini, C. Colombrita, C. Mazzola, D. L. Alkon, and F. Drago, “Behavioral effects of dietary cholesterol in rats tested in experimental models of mild stress and cognition tasks,” European Neuropsychopharmacology, vol. 18, no. 6, pp. 462–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Miller and J. M. Wehner, “Cholesterol treatment facilitates spatial learning performance in DBA/2Ibg mice,” Pharmacology Biochemistry and Behavior, vol. 49, no. 1, pp. 257–261, 1994. View at Google Scholar · View at Scopus
  18. M. Upchurch and J. M. Wehner, “DBA/2Ibg mice are incapable of cholinergically-based learning in the Morris water task,” Pharmacology Biochemistry and Behavior, vol. 29, no. 2, pp. 325–329, 1988. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Dufour, Q. Y. Liu, P. Gusev, D. Alkon, and M. Atzori, “Cholesterol-enriched diet affects spatial learning and synaptic function in hippocampal synapses,” Brain Research, vol. 1103, no. 1, pp. 88–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Võikar, H. Rauvala, and E. Ikonen, “Cognitive deficit and development of motor impairment in a mouse model of Niemann-Pick type C disease,” Behavioural Brain Research, vol. 132, no. 1, pp. 1–10, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Xu, R. J. Servatius, S. Shefer et al., “Relationship between abnormal cholesterol synthesis and retarded learning in rats,” Metabolism: Clinical and Experimental, vol. 47, no. 7, pp. 878–882, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Endo, J. I. Nishimura, and F. Kimura, “Impairment of maze learning in rats following long-term glucocorticoid treatments,” Neuroscience Letters, vol. 203, no. 3, pp. 199–202, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. W. T. O'Brien, G. Xu, A. Batta et al., “Developmental sensitivity of associative learning to cholesterol synthesis inhibitors,” Behavioural Brain Research, vol. 129, no. 1-2, pp. 141–152, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. B. G. Schreurs, C. A. Smith-Bell, D. S. Darwish, G. Stankovic, and D. L. Sparks, “High dietary cholesterol facilitates classical conditioning of the rabbit's nictitating membrane response,” Nutritional Neuroscience, vol. 10, no. 1-2, pp. 31–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. B. G. Schreurs, C. A. Smith-Bell, D. S. Darwish et al., “Cholesterol enhances classical conditioning of the rabbit heart rate response,” Behavioural Brain Research, vol. 181, no. 1, pp. 52–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. B. G. Schreurs, C. A. Smith-Bell, J. Lochhead, and D. L. Sparks, “Cholesterol modifies classical conditioning of the rabbit (Oryctolagus cuniculus) nictitating membrane response,” Behavioral Neuroscience, vol. 117, no. 6, pp. 1220–1232, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. D. S. Darwish, D. Wang, G. W. Konat, and B. G. Schreurs, “Dietary cholesterol impairs memory and memory increases brain cholesterol and sulfatide levels,” Behavioral Neuroscience, vol. 124, no. 1, pp. 115–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Zambón, M. Quintana, P. Mata et al., “Higher incidence of mild cognitive impairment in familial hypercholesterolemia,” The American Journal of Medicine, vol. 123, no. 3, pp. 267–274, 2010. View at Google Scholar · View at Scopus
  29. A. Solomon, I. Kåreholt, T. Ngandu et al., “Serum total cholesterol, statins and cognition in non-demented elderly,” Neurobiology of Aging, vol. 30, no. 6, pp. 1006–1009, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. F. C. Goldstein, A. V. Ashley, Y. W. Endeshaw, J. Hanfelt, J. J. Lah, and A. I. Levey, “Effects of hypertension and hypercholesterolemia on cognitive functioning in patients with Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 22, no. 4, pp. 336–342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Solomon, I. Kåreholt, T. Ngandu et al., “Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow-up study,” Neurology, vol. 68, no. 10, pp. 751–756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. T. M. A. Bocan, S. B. Mueller, M. J. Mazur, P. D. Uhlendorf, E. Q. Brown, and K. A. Kieft, “The relationship between the degree of dietary-induced hypercholesterolemia in the rabbit and atherosclerotic lesion formation,” Atherosclerosis, vol. 102, no. 1, pp. 9–22, 1993. View at Google Scholar · View at Scopus
  33. K. Riedmüller, S. Metz, G. A. Bonaterra et al., “Cholesterol diet and effect of long-term withdrawal on plaque development and composition in the thoracic aorta of New Zealand White rabbits,” Atherosclerosis, vol. 210, no. 2, pp. 407–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. D. J. Lamb, T. Y. Avades, and G. A. A. Ferns, “Biphasic modulation of atherosclerosis induced by graded dietary copper supplementation in the cholesterol-fed rabbit,” International Journal of Experimental Pathology, vol. 82, no. 5, pp. 287–294, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. P. D. Henry and K. I. Bentley, “Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine,” Journal of Clinical Investigation, vol. 68, no. 5, pp. 1366–1369, 1981. View at Google Scholar · View at Scopus
  36. Y. Huang, K. E. Walker, F. Hanley, J. Narula, S. R. Houser, and T. N. Tulenko, “Cardiac systolic and diastolic dysfunction after a cholesterol-rich diet,” Circulation, vol. 109, no. 1, pp. 97–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. B. G. Schreurs and D. L. Alkon, “US-US conditioning of the rabbit's nictitating membrane response: emergence of a conditioned response without alpha conditioning,” Psychobiology, vol. 18, no. 3, pp. 312–320, 1990. View at Google Scholar · View at Scopus
  38. S. R. Coleman and I. Gormezano, “Classical conditioning of the rabbit's (Oryctolagus cuniculus) nictitating membrane response under symmetrical CS-US interval shifts,” Journal of Comparative and Physiological Psychology, vol. 77, no. 3, pp. 447–455, 1971. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Gormezano, “Classical conditioning,” in Experimental Methods and Instrumentation in Psychology, J. B. Sidowski, Ed., pp. 385–420, McGraw-Hill, New York, NY, USA, 1966. View at Google Scholar
  40. I. Gormezano and C. M. Gibbs, “Transduction of the rabbit's nictitating membrane response,” Behavior Research Methods, Instruments, & Computers, vol. 20, pp. 18–21, 1988. View at Google Scholar
  41. D. S. Woodruff-Pak and J. F. Disterhoft, “Where is the trace in trace conditioning?” Trends in Neurosciences, vol. 31, no. 2, pp. 105–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. D. L. Sparks, “Intraneuronal β-amyloid immunoreactivity in the CNS,” Neurobiology of Aging, vol. 17, no. 2, pp. 291–299, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. A. P. Weible, M. D. McEchron, and J. F. Disterhoft, “Cortical involvement in acquisition and extinction of trace eyeblink conditioning,” Behavioral Neuroscience, vol. 114, no. 6, pp. 1058–1067, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Holland, J. B. Brewer, D. J. Hagler, C. Fenema-Notestine, and A. M. Dale, “Subregional neuroanatomical change as a biomarker for Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 49, pp. 20954–20959, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Zheng, C. Zhang, W. Yang et al., “Fat and cholesterol diet induced lipid metabolic disorders and insulin resistance in rabbit,” Experimental and Clinical Endocrinology and Diabetes, vol. 117, no. 8, pp. 400–405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. D. L. Sparks, “Cholesterol metabolism and brain amyloidosis: evidence for a role of copper in the clearance of Aβ through the liver,” Current Alzheimer Research, vol. 4, no. 2, pp. 165–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. J. C. Russell and S. D. Proctor, “Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis,” Cardiovascular Pathology, vol. 15, no. 6, pp. 318–330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. A. E. Yanni, “The laboratory rabbit: an animal model of atherosclerosis research,” Laboratory Animals, vol. 38, no. 3, pp. 246–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. D. L. Sparks, T. A. Martin, D. R. Gross, and J. C. Hunsaker, “Link between heart disease, cholesterol, and Alzheimer's disease: a review,” Microscopy Research and Technique, vol. 50, no. 4, pp. 287–290, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. B. G. Schreurs, “Long-term memory and extinction of rabbit nictitating membrane trace conditioning,” Learning and Motivation, vol. 29, no. 1, pp. 68–82, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. B. G. Schreurs, “Long-term memory and extinction of the classically conditioned rabbit nictitating membrane response,” Learning and Motivation, vol. 24, no. 3, pp. 293–302, 1993. View at Publisher · View at Google Scholar · View at Scopus
  52. K. J. Williams, J. E. Feig, and E. A. Fisher, “Rapid regression of atherosclerosis: insights from the clinical and experimental literature,” Nature Clinical Practice Cardiovascular Medicine, vol. 5, no. 2, pp. 91–102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Prasad, “Regression of hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed,” Atherosclerosis, vol. 197, no. 1, pp. 34–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Stein and O. Stein, “Does therapeutic intervention achieve slowing of progression or bona fide regression of atherosclerotic lesions?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 2, pp. 183–188, 2001. View at Google Scholar · View at Scopus
  55. C. W. M. Adams and R. S. Morgan, “Regression of atheroma in the rabbit,” Atherosclerosis, vol. 28, no. 4, pp. 399–404, 1977. View at Google Scholar · View at Scopus
  56. B. Collin, D. Busseuil, M. Zeller et al., “Increased superoxide anion production is associated with early atherosclerosis and cardiovascular dysfunctions in a rabbit model,” Molecular and Cellular Biochemistry, vol. 294, no. 1-2, pp. 225–235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. B. J. Van Lenten, A. C. Wagner, M. Navab et al., “Lipoprotein inflammatory properties and serum amyloid A levels but not cholesterol levels predict lesion area in cholesterol-fed rabbits,” Journal of Lipid Research, vol. 48, no. 11, pp. 2344–2353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. N. C. Tronson and J. R. Taylor, “Molecular mechanisms of memory reconsolidation,” Nature Reviews Neuroscience, vol. 8, no. 4, pp. 262–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. P. W. Frankland and B. Bontempi, “The organization of recent and remote memories,” Nature Reviews Neuroscience, vol. 6, no. 2, pp. 119–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. M. E. Bouton, “Context and behavioral processes in extinction,” Learning and Memory, vol. 11, no. 5, pp. 485–494, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. J. W. Rudy, N. C. Huff, and P. Matus-Amat, “Understanding contextual fear conditioning: insights from a two-process model,” Neuroscience and Biobehavioral Reviews, vol. 28, no. 7, pp. 675–685, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. R. J. Servatius and K. D. Beck, “Mild interoceptive stressors affect learning and reactivity to contextual cues: toward understanding the development of unexplained illnesses,” Neuropsychopharmacology, vol. 30, no. 8, pp. 1483–1491, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. A. M. Hein and M. K. O'Banion, “Neuroinflammation and memory: the role of prostaglandins,” Molecular Neurobiology, vol. 40, no. 1, pp. 15–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. R. M. Barrientos, E. A. Higgins, J. C. Biedenkapp et al., “Peripheral infection and aging interact to impair hippocampal memory consolidation,” Neurobiology of Aging, vol. 27, no. 5, pp. 723–732, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. W. H. Cai, J. Blundell, J. Han, R. W. Greene, and C. M. Powell, “Postreactivation glucocorticoids impair recall of established fear memory,” Journal of Neuroscience, vol. 26, no. 37, pp. 9560–9566, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. S. J. Hopkins, “Central nervous system recognition of peripheral inflammation: a neural, hormonal collaboration,” Acta Bio-Medica : Atenei Parmensis, vol. 78, supplement 1, pp. 231–247, 2007. View at Google Scholar · View at Scopus
  67. S. Siegel and B. M. C. Ramos, “Applying laboratory research: drug anticipation and the treatment of drug addiction,” Experimental and Clinical Psychopharmacology, vol. 10, no. 3, pp. 162–183, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. S. C. Woods and D. S. Ramsay, “Pavlovian influences over food and drug intake,” Behavioural Brain Research, vol. 110, no. 1-2, pp. 175–182, 2000. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Siegel, “Multiple chemical sensitivity as a conditional response,” Toxicology and Industrial Health, vol. 15, no. 3-4, pp. 323–330, 1999. View at Google Scholar · View at Scopus
  70. S. H. Wang and R. G. M. Morris, “Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation,” Annual Review of Psychology, vol. 61, pp. 49–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Takashima, I. L. C. Nieuwenhuis, O. Jensen, L. M. Talamini, M. Rijpkema, and G. Fernández, “Shift from hippocampal to neocortical centered retrieval network with consolidation,” Journal of Neuroscience, vol. 29, no. 32, pp. 10087–10093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Dȩbiec, V. Doyère, K. Nader, and J. E. LeDoux, “Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3428–3433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. M. C. Inda, J. M. Delgado-Garcia, and A. M. Carrion, “Acquisition, consolidation, reconsolidation, and extinction of eyelid conditioning responses require de novo protein synthesis,” Journal of Neuroscience, vol. 25, no. 8, pp. 2070–2080, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. J. P. Johansen, C. K. Cain, L. E. Ostroff, and J. E. Ledoux, “Molecular mechanisms of fear learning and memory,” Cell, vol. 147, no. 3, pp. 509–524, 2011. View at Publisher · View at Google Scholar
  75. K. Nader and O. Hardt, “A single standard for memory: the case for reconsolidation,” Nature Reviews Neuroscience, vol. 10, no. 3, pp. 224–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Duvarci, C. Ben Mamou, and K. Nader, “Extinction is not a sufficient condition to prevent fear memories from undergoing reconsolidation in the basolateral amygdala,” European Journal of Neuroscience, vol. 24, no. 1, pp. 249–260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Suzuki, S. A. Josselyn, P. W. Frankland, S. Masushige, A. J. Silva, and S. Kida, “Memory reconsolidation and extinction have distinct temporal and biochemical signatures,” Journal of Neuroscience, vol. 24, no. 20, pp. 4787–4795, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. O. Ghribi, B. Larsen, M. Schrag, and M. M. Herman, “High cholesterol content in neurons increases BACE, β-amyloid, and phosphorylated tau levels in rabbit hippocampus,” Experimental Neurology, vol. 200, no. 2, pp. 460–467, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Robleto, A. M. Poulos, and R. F. Thompson, “Brain mechanisms of extinction of the classically conditioned eyeblink response,” Learning and Memory, vol. 11, no. 5, pp. 517–524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. S. P. Perrett and M. D. Mauk, “Extinction of conditioned eyelid responses requires the anterior lobe of cerebellar cortex,” Journal of Neuroscience, vol. 15, no. 3 I, pp. 2074–2080, 1995. View at Google Scholar · View at Scopus
  81. A. R. Delamater, “Experimental extinction in Pavlovian conditioning: behavioural and neuroscience perspectives,” Quarterly Journal of Experimental Psychology Section B, vol. 57, no. 2, pp. 97–132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. I. P. Pavlov, Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. (G. V. Anrep, Trans.), Oxford University Press, London, UK, 1927.
  83. R. A. Rescorla and A. R. Wagner, “A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement,” in Classicl Conditioning II: Current Research and Theory, A. H. Black and W. F. Prokasy, Eds., pp. 64–99, Appleton-Century-Crofts, New York, NY, USA, 1972. View at Google Scholar
  84. M. Heverin, S. Meaney, D. Lütjohann, U. Diczfalusy, J. Wahren, and I. Björkhem, “Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain,” Journal of Lipid Research, vol. 46, no. 5, pp. 1047–1052, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Yehuda, S. Rabinovitz, and D. I. Mostofsky, “Mediation of cognitive function by high fat diet following stress and inflammation,” Nutritional Neuroscience, vol. 8, no. 5-6, pp. 309–315, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. S. M. A. Rahman, A. M. Van Dam, M. Schultzberg, and M. Crisby, “High cholesterol diet results in increased expression of interleukin-6 and caspase-1 in the brain of apolipoprotein E knockout and wild type mice,” Journal of Neuroimmunology, vol. 169, no. 1-2, pp. 59–67, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. B. G. Schreurs, C. A. Smith-Bell, D. S. Darwish, G. Stankovic, and D. L. Sparks, “Classical conditioning of the rabbit's nictitating membrane response is a function of the duration of dietary cholesterol,” Nutritional Neuroscience, vol. 10, no. 3-4, pp. 159–168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. Z. Berkman, G. Tanriover, G. Acar, L. Sati, T. Altug, and R. Demir, “Changes in the brain cortex of rabbits on a cholesterol-rich diet following supplementation with a herbal extract of Tribulus terrestris,” Histology and Histopathology, vol. 24, no. 6, pp. 683–692, 2009. View at Google Scholar · View at Scopus