Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2012 (2012), Article ID 936272, 8 pages
http://dx.doi.org/10.1155/2012/936272
Review Article

Executive Dysfunction in MCI: Subtype or Early Symptom

1Center for the Study of Human Cognition, Department of Psychology, University of Oslo, 0316 Oslo, Norway
2Center for Advanced Study, Norwegian Academy of Science and Letters, 0271 Oslo, Norway
3Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
4Faculty Division of Psyciatry, Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
5Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, 5020 Bergen, Norway

Received 29 November 2011; Revised 4 April 2012; Accepted 10 April 2012

Academic Editor: Štefan Krajcík

Copyright © 2012 Ivar Reinvang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Albert, S. T. DeKosky, D. Dickson et al., “The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 270–279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Winblad, K. Palmer, M. Kivipelto, V. Jelic, and L. Fratiglioni, “Introduction: mild cognitive impairment: beyond controversies, towards a consensus,” Journal of Internal Medicine, vol. 256, no. 3, pp. 181–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. C. Petersen, R. O. Roberts, D. S. Knopman et al., “Mild cognitive impairment: ten years later,” Archives of Neurology, vol. 66, no. 12, pp. 1447–1455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. R. C. Petersen, P. S. Aisen, L. A. Beckett et al., “Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization,” Neurology, vol. 74, no. 3, pp. 201–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. R. C. Petersen et al., “Mild cognitive impairment: clinical characterization and outcome,” Archives of Neurology, vol. 56, no. 3, pp. 303–308., 1999. View at Google Scholar
  6. B. Dubois et al., “Revising the definition of Alzheimer's disease: a new lexicon,” The Lancet Neurology, vol. 9, no. 11, pp. 1118–1127, 2010. View at Google Scholar
  7. B. Dubois, H. H. Feldman, C. Jacova et al., “Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria,” The Lancet Neurology, vol. 6, no. 8, pp. 734–746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H. J. Rosen, J. Lengenfelder, and B. Miller, “Frontotemporal dementia,” Neurologic Clinics, vol. 18, no. 4, pp. 979–992, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Aarsland, K. Brønnick, and T. Fladby, “Mild Cognitive Impairment in Parkinson's Disease,” Current Neurology and Neuroscience Reports, vol. 11, no. 4, pp. 371–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. T. J. Ferman, B. F. Boeve, G. E. Smith et al., “REM sleep behavior disorder and dementia: Cognitive differences when compared with AD,” Neurology, vol. 52, no. 5, pp. 951–957, 1999. View at Google Scholar · View at Scopus
  11. M. Grau-Olivares and A. Arboix, “Mild cognitive impairment in stroke patients with ischemic cerebral small-vessel disease: a forerunner of vascular dementia?” Expert Review of Neurotherapeutics, vol. 9, no. 8, pp. 1201–1217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. H. Wilkins, J. Mathews, and Y. I. Sheline, “Late life depression with cognitive impairment: evaluation and treatment,” Clinical Interventions in Aging, vol. 4, no. 1, pp. 51–57, 2009. View at Google Scholar · View at Scopus
  13. R. L. Buckner, “Memory and executive function in aging and ad: multiple factors that cause decline and reserve factors that compensate,” Neuron, vol. 44, no. 1, pp. 195–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Head, A. Z. Snyder, L. E. Girton, J. C. Morris, and R. L. Buckner, “Frontal-hippocampal double dissociation between normal aging and Alzheimer's disease,” Cerebral Cortex, vol. 15, no. 6, pp. 732–739, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. R. Royall, E. C. Lauterbach, J. L. Cummings et al., “Executive control function: a review of its promise and challenges for clinical research—a report from the Committee on Research of the American Neuropsychiatric Association,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 14, no. 4, pp. 377–405, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Miyake, N. P. Friedman, M. J. Emerson, A. H. Witzki, A. Howerter, and T. D. Wager, “The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis,” Cognitive Psychology, vol. 41, no. 1, pp. 49–100, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Brandt, E. Aretouli, E. Neijstrom et al., “Selectivity of executive function deficits in mild cognitive impairment,” Neuropsychology, vol. 23, no. 5, pp. 607–618, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Fratiglioni, L. J. Launer, K. Andersen et al., “Incidence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts,” Neurology, vol. 54, no. 11, supplement, pp. S10–S15, 2000. View at Google Scholar · View at Scopus
  19. G. M. McKhann, D. S. Knopman, H. Chertkow et al., “The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 263–269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Albert, M. B. Moss, D. Blacker, R. Tanzi, and J. J. McArdle, “Longitudinal change in cognitive performance among individuals with mild cognitive impairment,” Neuropsychology, vol. 21, no. 2, pp. 158–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Chen, G. Ratcliff, S. H. Belle, J. A. Cauley, S. T. DeKosky, and M. Ganguli, “Cognitive tests that best discriminate between presymptomatic AD and those who remain nondemented,” Neurology, vol. 55, no. 12, pp. 1847–1853, 2000. View at Google Scholar · View at Scopus
  22. J. D. Huntley and R. J. Howard, “Working memory in early Alzheimer's disease: a neuropsychological review,” International Journal of Geriatric Psychiatry, vol. 25, no. 2, pp. 121–132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Traykov, A. S. Rigaud, P. Cesaro, and F. Boller, “Neuropsychological impairment in the early Alzheimer's disease,” Encephale, vol. 33, no. 3, part 1, pp. 310–316, 2007. View at Google Scholar · View at Scopus
  24. A. D. Baddeley, H. A. Baddeley, R. S. Bucks, and G. K. Wilcock, “Attentional control in Alzheimer's disease,” Brain, vol. 124, no. 8, pp. 1492–1508, 2001. View at Google Scholar · View at Scopus
  25. R. J. Perry, P. Watson, and J. R. Hodges, “The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer's disease: relationship to episodic and semantic memory impairment,” Neuropsychologia, vol. 38, no. 3, pp. 252–271, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. D. R. Royall, E. C. Lauterbach, D. Kaufer, P. Malloy, K. L. Coburn, and K. J. Black, “The cognitive correlates of functional status: a review from the Committee on Research of the American Neuropsychiatric Association,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 19, no. 3, pp. 249–265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. H. Tabert, J. J. Manly, X. Liu et al., “Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment,” Archives of General Psychiatry, vol. 63, no. 8, pp. 916–924, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. J. J. Gomar et al., “Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer's disease neuroimaging initiative,” Archives of General Psychiatry, vol. 68, no. 9, pp. 961–969, 2011. View at Google Scholar
  29. J. L. Whitwell, R. C. Petersen, S. Negash et al., “Patterns of atrophy differ among specific subtypes of mild cognitive impairment,” Archives of Neurology, vol. 64, no. 8, pp. 1130–1138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. R. C. Petersen et al., “Current concepts in mild cognitive impairment,” Archives of Neurology, vol. 58, no. 12, pp. 1985–1992, 2001. View at Google Scholar
  31. M. Storandt, “Cognitive deficits in the early stages of Alzheimer's disease,” Current Directions in Psychological Science, vol. 17, no. 3, pp. 198–202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Nordlund, S. Rolstad, P. Hellström, M. Sjögren, S. Hansen, and A. Wallin, “The Goteborg MCI study: mild cognitive impairment is a heterogeneous condition,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 11, pp. 1485–1490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Pa, A. Boxer, L. L. Chao et al., “Clinical-neuroimaging characteristics of dysexecutive mild cognitive impairment,” Annals of Neurology, vol. 65, no. 4, pp. 414–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. L. L. Chao, J. Pa, A. Duarte et al., “Patterns of cerebral hypoperfusion in amnestic and dysexecutive MCI,” Alzheimer Disease and Associated Disorders, vol. 23, no. 3, pp. 245–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. K. Johnson, J. Pa, A. L. Boxer, J. H. Kramer, K. Freeman, and K. Yaffe, “Baseline predictors of clinical progression among patients with dysexecutive mild cognitive impairment,” Dementia and Geriatric Cognitive Disorders, vol. 30, no. 4, pp. 344–351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. K. Johnson, B. A. Vogt, R. Kim, C. W. Cotman, and E. Head, “Isolated executive impairment and associated frontal neuropathology,” Dementia and Geriatric Cognitive Disorders, vol. 17, no. 4, pp. 360–367, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Grambaite et al., “Executive dysfunction in mild cognitive impairment is associated with changes in frontal and cingulate white matter tracts,” Journal of Alzheimer's Disease, vol. 27, no. 2, pp. 453–462, 2011. View at Google Scholar
  38. A. J. Jak, K. J. Bangen, C. E. Wierenga, L. Delano-Wood, J. Corey-Bloom, and M. W. Bondi, “Contributions of neuropsychology and neuroimaging to understanding clinical subtypes of mild cognitive impairment,” International Review of Neurobiology, vol. 84, pp. 81–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. P. A. Reuter-Lorenz and C. Lustig, “Brain aging: reorganizing discoveries about the aging mind,” Current Opinion in Neurobiology, vol. 15, no. 2, pp. 245–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Collette, M. Hogge, E. Salmon, and M. Van der Linden, “Exploration of the neural substrates of executive functioning by functional neuroimaging,” Neuroscience, vol. 139, no. 1, pp. 209–221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Cabeza and L. Nyberg, “Imaging cognition II: an empirical review of 275 PET and fMRI studies,” Journal of Cognitive Neuroscience, vol. 12, no. 1, pp. 1–47, 2000. View at Google Scholar · View at Scopus
  42. J. L. Cummings, “Frontal-subcortical circuits and human behavior,” Archives of Neurology, vol. 50, no. 8, pp. 873–880, 1993. View at Google Scholar · View at Scopus
  43. R. L. Buckner and M. E. Wheeler, “The cognitive neuroscience of remembering,” Nature Reviews Neuroscience, vol. 2, no. 9, pp. 624–634, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. M. P. Milham, K. I. Erickson, M. T. Banich et al., “Attentional control in the aging brain: insights from an fMRI study of the stroop task,” Brain and Cognition, vol. 49, no. 3, pp. 277–296, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Bush, B. A. Vogt, J. Holmes et al., “Dorsal anterior cingulate cortex: a role in reward-based decision making,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 523–528, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Pa, K. L. Possin, S. M. Wilson et al., “Gray matter correlates of set-shifting among neurodegenerative disease, mild cognitive impairment, and healthy older adults,” Journal of the International Neuropsychological Society, vol. 16, no. 4, pp. 640–650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. A. M. Hall, R. Y. Moore, O. L. Lopez, L. Kuller, and J. T. Becker, “Basal forebrain atrophy is a presymptomatic marker for Alzheimer's disease,” Alzheimer's and Dementia, vol. 4, no. 4, pp. 271–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. B. A. Vogt, Cingulate Neurobiology and Disease, Oxford University Press, New York, NY, USA, 2009.
  49. M. Sjöbeck, C. Elfgren, E. M. Larsson et al., “Alzheimer's disease (AD) and executive dysfunction. A case-control study on the significance of frontal white matter changes detected by diffusion tensor imaging (DTI),” Archives of Gerontology and Geriatrics, vol. 50, no. 3, pp. 260–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. M. M. Mielke, N. A. Kozauer, K. C. G. Chan et al., “Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease,” NeuroImage, vol. 46, no. 1, pp. 47–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Zhang, N. Schuff, G. H. Jahng et al., “Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease,” Neurology, vol. 68, no. 1, pp. 13–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. R. L. Buckner, A. Z. Snyder, B. J. Shannon et al., “Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory,” Journal of Neuroscience, vol. 25, no. 34, pp. 7709–7717, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Arikuni, H. Sako, and A. Murata, “Ipsilateral connections of the anterior cingulate cortex with the frontal and medial temporal cortices in the macaque monkey,” Neuroscience Research, vol. 21, no. 1, pp. 19–39, 1994. View at Publisher · View at Google Scholar · View at Scopus
  54. B. A. Vogt, P. B. Crino, and L. Volicer, “Laminar alterations in γ-aminobutyric acid(A), muscarinic, and β adrenoceptors and neuron degeneration in cingulate cortex in Alzheimer's disease,” Journal of Neurochemistry, vol. 57, no. 1, pp. 282–290, 1991. View at Google Scholar · View at Scopus
  55. C. R. Jack Jr., V. J. Lowe, S. D. Weigand et al., “Serial PIB and MRI in normal, mild cognitive impairment and Alzheimers disease: implications for sequence of pathological events in Alzheimers disease,” Brain, vol. 132, no. 5, pp. 1355–1365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. S. M. De la Monte, “Quantitation of cerebral atrophy in preclinical and end-stage Alzheimer's disease,” Annals of Neurology, vol. 25, no. 5, pp. 450–459, 1989. View at Google Scholar · View at Scopus
  57. L. Wang, F. C. Goldstein, E. Veledar et al., “Alterations in cortical thickness and white matter integrity in mild cognitive impairment measured by whole-brain cortical thickness mapping and diffusion tensor imaging,” American Journal of Neuroradiology, vol. 30, no. 5, pp. 893–899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Grambaite, I. Reinvang, P. Selnes et al., “Pre-dementia memory impairment is associated with white matter tract affection,” Journal of the International Neuropsychological Society, vol. 17, no. 1, pp. 143–153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. R. A. Sperling, P. S. Aisen, L. A. Beckett et al., “Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 280–292, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. E. H. Corder, A. M. Saunders, W. J. Strittmatter et al., “Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families,” Science, vol. 261, no. 5123, pp. 921–923, 1993. View at Google Scholar · View at Scopus
  61. E. Genin, “APOE and Alzheimer disease: a major gene with semi-dominant inheritance,” Molecular Psychiatry, vol. 16, no. 9, pp. 903–907, 2011. View at Google Scholar
  62. R. J. Caselli, D. Walker, L. Sue, M. Sabbagh, and T. Beach, “Amyloid load in nondemented brains correlates with APOE e4,” Neuroscience Letters, vol. 473, no. 3, pp. 168–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. K. E. Pike, G. Savage, V. L. Villemagne et al., “β-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease,” Brain, vol. 130, no. 11, pp. 2837–2844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Grimmer, S. Tholen, B. H. Yousefi et al., “Progression of cerebral amyloid load is associated with the apolipoprotein e ε4 genotype in Alzheimer's disease,” Biological Psychiatry, vol. 68, no. 10, pp. 879–884, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. P. M. Greenwood, T. Sunderland, C. Lambert, and R. Parasuraman, “Effects of apolipoprotein E genotype on spatial attention, working memory, and their interaction in healthy, middle-aged adults: results from the National Institute of Mental Health's BIOCARD study,” Neuropsychology, vol. 19, no. 2, pp. 199–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Davies and A. J. F. Maloney, “Selective loss of central cholinergic neurons in Alzheimer's disease,” The Lancet, vol. 2, no. 8000, p. 1403, 1976. View at Google Scholar · View at Scopus
  67. P. J. Whitehouse, D. L. Price, and R. G. Struble, “Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain,” Science, vol. 215, no. 4537, pp. 1237–1239, 1982. View at Google Scholar · View at Scopus
  68. S. T. Dekosky, M. D. Ikonomovic, S. D. Styren et al., “Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment,” Annals of Neurology, vol. 51, no. 2, pp. 145–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Lane, H. H. Feldman, J. Meyer et al., “Synergistic effect of apolipoprotein E ε4 and butyrylcholinesterase K-variant on progression from mild cognitive impairment to Alzheimer's disease,” Pharmacogenetics and Genomics, vol. 18, no. 4, pp. 289–298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. T. Darreh-Shori, A. Forsberg, N. Modiri et al., “Differential levels of apolipoprotein E and butyrylcholinesterase show strong association with pathological signs of Alzheimer's disease in the brain in vivo,” Neurobiology of Aging, vol. 32, no. 12, pp. 2320.e15–2320.e32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Bao, L. Wicklund, P. N. Lacor, W. L. Klein, A. Nordberg, and A. Marutle, “Different β-amyloid oligomer assemblies in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity,” Neurobiology of Aging, vol. 33, no. 4, pp. 825.e1–825.e13, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. N. M. Wisdom, J. L. Callahan, and K. A. Hawkins, “The effects of apolipoprotein E on non-impaired cognitive functioning: a meta-analysis,” Neurobiology of Aging, vol. 32, no. 1, pp. 63–74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Parasuraman, P. M. Greenwood, J. V. Haxby, and C. L. Grady, “Visuospatial attention in dementia of the Alzheimer type,” Brain, vol. 115, no. 3, pp. 711–733, 1992. View at Google Scholar · View at Scopus
  74. P. M. Greenwood, T. Sunderland, J. L. Friz, and R. Parasuraman, “Genetics and visual attention: selective deficits in healthy adult carriers of the ε4 allele of the apolipoprotein E gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 21, pp. 11661–11666, 2000. View at Google Scholar · View at Scopus
  75. T. Espeseth, P. M. Greenwood, I. Reinvang et al., “Interactive effects of APOE and CHRNA4 on attention and white matter volume in healthy middle-aged and older adults,” Cognitive, Affective and Behavioral Neuroscience, vol. 6, no. 1, pp. 31–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. V. M. Rosen, J. L. Bergeson, K. Putnam, A. Harwell, and T. Sunderland, “Working memory and apolipoprotein E: what's the connection?” Neuropsychologia, vol. 40, no. 13, pp. 2226–2233, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. I. Reinvang, I. L. Winjevoll, H. Rootwelt, and T. Espeseth, “Working memory deficits in healthy APOE epsilon 4 carriers,” Neuropsychologia, vol. 48, no. 2, pp. 566–573, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. H. A. Wishart, A. J. Saykin, L. A. Rabin et al., “Increased brain activation during working memory in cognitively intact adults with the APOE ε4 allele,” American Journal of Psychiatry, vol. 163, no. 9, pp. 1603–1610, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. I. Reinvang, T. Espeseth, and L. Gjerstad, “Cognitive ERPs are related to ApoE allelic variation in mildly cognitively impaired patients,” Neuroscience Letters, vol. 382, no. 3, pp. 346–351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Espeseth, H. Rootwelt, and I. Reinvang, “Apolipoprotein E modulates auditory event-related potentials in healthy aging,” Neuroscience Letters, vol. 459, no. 2, pp. 91–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Irimajiri, E. J. Golob, and A. Starr, “ApoE genotype and abnormal auditory cortical potentials in healthy older females,” Neurobiology of Aging, vol. 31, no. 10, pp. 1799–1804, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Espeseth, L. T. Westlye, K. B. Walhovd et al., “Apolipoprotein E ε4-related thickening of the cerebral cortex modulates selective attention,” Neurobiology of Aging, vol. 33, no. 2, pp. 304–322.e1, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Espeseth, L. T. Westlye, A. M. Fjell, K. B. Walhovd, H. Rootwelt, and I. Reinvang, “Accelerated age-related cortical thinning in healthy carriers of apolipoprotein E ε4,” Neurobiology of Aging, vol. 29, no. 3, pp. 329–340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Fortea, R. Sala-Llonch, D. Bartrés-Faz et al., “Increased cortical thickness and caudate volume precede atrophy in psen1 mutation carriers,” Journal of Alzheimer's Disease, vol. 22, no. 3, pp. 909–922, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Fortea, R. Sala-Llonch, D. Bartrés-Faz et al., “Cognitively preserved subjects with transitional cerebrospinal fluid ß-amyloid 1-42 values have thicker cortex in Alzheimer's disease vulnerable areas,” Biological Psychiatry, vol. 70, no. 2, pp. 183–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. I. Reinvang, A. J. Lundervold, H. Rootwelt, E. Wehling, and T. Espeseth, “Individual variation in a cholinergic receptor gene modulates attention,” Neuroscience Letters, vol. 453, no. 3, pp. 131–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Espeseth, T. Endestad, H. Rootwelt, and I. Reinvang, “Nicotine receptor gene CHRNA4 modulates early event-related potentials in auditory and visual oddball target detection tasks,” Neuroscience, vol. 147, no. 4, pp. 974–985, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Espeseth, M. H. Sneve, H. Rootwelt, and B. Laeng, “Nicotinic receptor gene chrna4 interacts with processing load in attention,” PLoS ONE, vol. 5, no. 12, Article ID e14407, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. P. M. Greenwood, J. A. Fossella, and R. Parasuraman, “Specificity of the effect of a nicotinic receptor polymorphism on individual differences in visuospatial attention,” Journal of Cognitive Neuroscience, vol. 17, no. 10, pp. 1611–1620, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. P. M. Greenwood, M. K. Lin, R. Sundararajan, K. J. Fryxell, and R. Parasuraman, “Synergistic effects of genetic variation in nicotinic and muscarinic receptors on visual attention but not working memory,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3633–3638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. P. M. Greenwood, R. Sundararajan, M. K. Lin, R. Kumar, K. J. Fryxell, and R. Parasuraman, “Both a nicotinic single nucleotide polymorphism (SNP) and a noradrenergic SNP modulate working memory performance when attention is manipulated,” Journal of Cognitive Neuroscience, vol. 21, no. 11, pp. 2139–2153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. G. Winterer, F. Musso, A. Konrad et al., “Association of attentional network function with exon 5 variations of the CHRNA4 gene,” Human Molecular Genetics, vol. 16, no. 18, pp. 2165–2174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Parasuraman, P. M. Greenwood, R. Kumar, and J. Fossella, “Beyond heritability: neurotransmitter genes differentially modulate visuospatial attention and working memory,” Psychological Science, vol. 16, no. 3, pp. 200–207, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Vogel, S. G. Hasselbalch, A. Gade, M. Ziebell, and G. Waldemar, “Cognitive and functional neuroimaging correlates for anosognosia in mild cognitive impairment and Alzheimer's disease,” International Journal of Geriatric Psychiatry, vol. 20, no. 3, pp. 238–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. J. K. Johnson, J. Pa, A. L. Boxer, J. H. Kramer, K. Freeman, and K. Yaffe, “Baseline predictors of clinical progression among patients with dysexecutive mild cognitive impairment,” Dementia and Geriatric Cognitive Disorders, vol. 30, no. 4, pp. 344–351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. C. R. Jack Jr., D. S. Knopman, W. J. Jagust et al., “Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade,” The Lancet Neurology, vol. 9, no. 1, pp. 119–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. V. Heise, N. Filippini, K. P. Ebmeier, and C. E. Mackay, “The APOE epsilon 4 allele modulates brain white matter integrity in healthy adults,” Molecular Psychiatry, vol. 16, no. 9, pp. 908–916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. N. Filippini et al., “Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 17, pp. 7209–7214, 2009. View at Google Scholar
  99. C. S. Carter and D. M. Barch, “Cognitive neuroscience-based approaches to measuring and improving treatment effects on cognition in schizophrenia: the CNTRICS initiative,” Schizophrenia Bulletin, vol. 33, no. 5, pp. 1131–1137, 2007. View at Publisher · View at Google Scholar · View at Scopus