International Journal of Aerospace Engineering
 Journal metrics
Acceptance rate35%
Submission to final decision101 days
Acceptance to publication39 days
CiteScore1.260
Impact Factor1.131
 Submit

Space-Based Optical Observations on Space Debris via Multipoint of View

Read the full article

 Journal profile

International Journal of Aerospace Engineering serves the international aerospace engineering community through the dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.

 Editor spotlight

Chief Editor, Professor Zhao, is based at the University of Canterbury and his research interests include applying theoretical, numerical and experimental approaches to study combustion instability, thermoacoustics and aerodynamics.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Computational Investigation of Flow Control Methods in the Impeller Rear Cavity

In typical median and small aeroengines, the air used to realize the functions such as cooling of turbine blades and disks, sealing of turbine cavities and bearing chambers, adjusting of rotating assembly axial load is normally drawn through the rear cavity of centrifugal impeller, so the thorough understanding of flow characteristics and pressure distribution and the proposal of the corresponding control methods in the cavity are the key to design the rational secondary air system. With an impeller rear cavity in a small turbofan engine as an object, the current study was dedicated to the investigation of flow control methods in the cavity. Two methods, namely, baffle and swirl-controlled orifice, were proposed to regulate the pressure loss and distribution in the cavity. Furthermore, the influence of geometry parameters of the two methods such as the length of baffle, the space between the baffle and rotating disk wall, the orientation, and radial position of swirl-controlled orifice was investigated. The CFD results show that the swirl-controlled orifice which could deswirl the flow is more effective in regulating the pressure loss and its distribution in cavity than baffle. The variation of the radial position of the swirl-controlled orifice had little influence on pressure loss but obvious influence on pressure distribution; therefore, decreasing the radial position could reduce the axial load on the rotating disk without changing the outlet pressure.

Research Article

Numerical Investigation on Flapping Aerodynamic Performance of Dragonfly Wings in Crosswind

Numerical simulations are performed to investigate the influence of crosswind on the aerodynamic characteristics of rigid dragonfly-like flapping wings through the solution of the three-dimensional unsteady Navier-Stokes equations. The aerodynamic forces, the moments, and the flow structures of four dragonfly wings are examined when the sideslip angle between the crosswind and the flight direction varied from 0o to 90o. The stability of the dragonfly model in crosswind is analyzed. The results show that the sideslip angle has a little effect on the total time-average lift force but significant influence on the total time-average thrust force, lateral force, and three-direction torques. An increase in the sideslip angle gives rise to a larger total time-average lateral force and yaw moment. These may accelerate the lateral skewing of the dragonfly, and the increased rolling and pitching moments will further aggravate the instability of the dragonfly model. The vorticities and reattached flow on the wings move laterally to one side due to the crosswind, and the pressure on wing surfaces is no longer symmetrical and hence, the balance between the aerodynamic forces of the wings on two sides is broken. The effects of the sideslip angle on each dragonfly wing are different, e.g., has a greater effect on the aerodynamic forces of the hind wings than those of the fore wings. When sensing a crosswind, it is optimal to control the two hind wings of the bionic dragonfly-like micro aerial vehicles.

Research Article

Predictive Functional Control-Based Zenith Pass Controller Design for Roll-Pitch Seeker

A roll-pitch seeker has a wide field of view but suffers from a singularity as the sightline coincides with the outer gimbal (OG) axis. In the vicinity of the singularity, the tracking effectiveness is often degraded or even lost due to the high actuation demand on OG, which is known as the zenith pass problem. To solve this problem, this paper first proposes a novel motion model of sightline to predict the singularity in a receding horizon, where the model parameters are identified using a modified recursive least square estimator. And with the singularity predictions as set points, a predictive functional controller is then designed for the OG position control to minimize the tracking error. This novel combination control scheme is validated in MATLAB/Simulink. Simulation results have confirmed that the proposed scheme can significantly mitigate the zenith pass problem and be applied to the real-time tracking process.

Research Article

Inflatable Leading Edge-Based Dynamic Stall Control considering Fluid-Structure Interaction

The inflatable leading edge (ILE) is explored as a dynamic stall control concept. A fluid-structure interaction (FSI) numerical method for the elastic membrane structure is constructed based on unsteady Reynolds-averaged Navier-Stokes (URANS) and a mass-spring-damper (MSD) structural dynamic model. Radial basis function- (RBF-) based mesh deformation algorithm and Laplacian and optimization-based mesh smoothing algorithm are adopted in flowfield simulations to achieve the pitching oscillation of the airfoil and to ensure the mesh quality. An airfoil is considered at a freestream Mach number of 0.3 and chord-based Reynolds number of . The airfoil is pitched about its quarter-chord axis at a sinusoidal motion. The numerical results indicate that the ILE can change the radius of curvature of the airfoil leading edge, which could reduce the streamwise adverse pressure gradient and suppress the formation of dynamic stall vortex (DSV). Although the maximum lift coefficient of the airfoil is slightly reduced during the control process, the maximum drag and pitching moment coefficients of the airfoil are greatly reduced by up to 66% and 75.2%, respectively. The relative position of the ILE has a significant influence on its control effect. The control laws of inflation and deflation also affect the control ability of the ILE.

Research Article

New Method for Analyzing the Flutter Stability of Hingeless Blades with Advanced Geometric Configurations in Hovering

A new method used to analyze the aeroelastic stability of a helicopter hingeless blade in hovering has been developed, which is especially suitable for a blade with advanced geometric configuration. This method uses a modified doublet-lattice method (MDLM) and a 3-D finite element (FE) model for building the aeroelastic equation of a blade in hovering. Thereafter, the flutter solution of the equation is calculated by the V-g method, assuming blade motions to be small perturbations about the steady equilibrium deflection. The MDLM, which is suitable to calculate the unsteady aerodynamic force of nonplanar rotor blade in hovering, is developed from the doublet-lattice method (DLM). The structural analysis tool is the commercial software ANSYS. The comparisons of the obtained results against those in the literatures show the capabilities of the MDLM and the method of structural analysis. The flutter stabilities of swept tip blades with different aspect ratios are analyzed using the new method developed in this work and the usual method on the basis of the unsteady strip theory and beam model. It shows that considerable differences appear in the flutter rotational velocities with the decrease of the aspect ratio. The flutter rotational velocities obtained by the present method are evidently lower than those obtained by the usual method.

Research Article

Factors Affecting the Compression and Energy Absorption Properties of Small-Sized Thin-Walled Metal Tubes

To solve the problem of the effective cushioning of fast-moving mechanical components in small ring-shaped spaces, the factors affecting the compression and energy absorption properties of small-sized hollow metal tubes were studied. Simulation models were constructed to analyse the influences of tube diameter, wall thickness, relative position, and number of stacked components on the compression and energy absorption properties. The correctness of the simulation method and its output were verified by experiments, which proved the effectiveness of compression and energy absorption properties of small-sized thin-walled metal tubes. The research provides support for the application of metal tube buffers in armament launch technology and engineering practice.

International Journal of Aerospace Engineering
 Journal metrics
Acceptance rate35%
Submission to final decision101 days
Acceptance to publication39 days
CiteScore1.260
Impact Factor1.131
 Submit