Table of Contents Author Guidelines Submit a Manuscript
International Journal of Aerospace Engineering
Volume 2011, Article ID 151262, 12 pages
http://dx.doi.org/10.1155/2011/151262
Research Article

Cascade-Based Controlled Attitude Synchronization and Tracking of Spacecraft in Leader-Follower Formation

1Department of Technology, Narvik University College, PB 385, 8505 Narvik, Norway
2CNRS, LSS-SUPELEC, 3 rue Joliot Curie, 91192 Gif-sur-Yvette, France

Received 30 June 2010; Revised 5 January 2011; Accepted 23 February 2011

Academic Editor: Giampiero Campa

Copyright © 2011 Rune Schlanbusch et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Blekhman, Synchronization in Science and Technology, ASME Press Translations, ASME Press, New York, NY, USA, 1988.
  2. A. Rodriguez-Angeles, Synchronization of mechanical systems, Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2002.
  3. H. Nijmeijer and A. Rodriguez-Angeles, Synchronization of Mechanical Systems, vol. 46 of World Scientific Series on Nonlinear Science, Series A, 2003.
  4. E. Kyrkjebø, Motion coordination of mechanical systems: leader-follower synchronization of euler-lagrange systems using output feedback control, Ph.D. thesis, Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway, 2007.
  5. A. Rodriguez-Angeles and H. Nijmeijer, “Coordination of two robot manipulators based on position measurements only,” International Journal of Control, vol. 74, no. 13, pp. 1311–1323, 2001. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. A. K. Bondhus, K. Y. Pettersen, and H. Nijmeijer, “Master-slave synchronization of robot manipulators,” in Proceedings of the IFAC Symposium on Nonlinear Control Systems Design, Stuttgart, Germany, 2004.
  7. J. Lawton and R. W. Beard, “Elementary attitude formation maneuver via leader-following and behaviour-based control,” in Proceedings of the AIAA Guidance, Navigation and Control Conference, Denver, Colo, USA, 2000.
  8. A. K. Bondhus, K. Y. Pettersen, and J. T. Gravdahl, “Leader/follower synchronization of satellite attitude without angular velocity measurements,” in Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference (CDC-ECC '05), pp. 7270–7277, Seville, Spain, December 2005. View at Publisher · View at Google Scholar
  9. R. Kristiansen, Dynamic synchronization of spacecraft—modeling and coordinated control of leader-follower spacecraft formations, Ph.D. thesis, Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway, 2008.
  10. E. I. Grøtli, Robust stability and control of spacecraft formations, Ph.D. thesis, Norwegian University of Science and Technology, 2010.
  11. S. H. Fu, C. C. Cheng, and C. Y. Yin, “Nonlinear adaptive tracking control for underway replenishment process,” in Proceeding of IEEE International Conference on Networking, Sensing and Control, vol. 2, pp. 707–712, Taipei, Taiwan, March 2004.
  12. E. Kyrkjebø, E. Panteley, A. Chaillet, and K. Y. Pettersen, “A virtual vehicle approach to underway replenishment,” in Group Coordination and Cooperative Control, K. Y. Pettersen, J. T. Gravdahl, and H. Nijmeijer, Eds., vol. 336 of Lecture Notes in Control and Information Sciences, pp. 171–189, Springer, Berlin, Germany, 2006. View at Google Scholar
  13. J. R. Lawton, B. J. Young, and R. W. Beard, “Decentralized approach to elementary formation maneuvers,” in Proceedings of IEEE International Conference on Robotics and Automation (ICRA '00), vol. 3, pp. 2728–2733, April 2000.
  14. G. Antonelli and S. Chiaverini, “Kinematic control of platoons of autonomous vehicles,” IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1285–1292, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Arrichiello, Coordination control of multiple mobile robots, Ph.D. thesis, Cassino University, Cassino, Italy, 2006.
  16. F. Arrichiello, S. Chiaverini, and T. I. Fossen, “Formation control of marine surface vessels using the null-space-based behavioral control,” in Group Coordination and Cooperative Control, K. Y. Pettersen, J. T. Gravdahl, and H. Nijmeijer, Eds., vol. 336 of Lecture Notes in Control and Information Sciences, chapter 1, pp. 1–19, Springer, Berlin, Germany, 2006. View at Google Scholar
  17. R. Cui, S. S. Ge, B. voon Ee How, and Y. Sang Choo, “Leader-follower formation control of underactuated autonomous underwater vehicles,” Ocean Engineering, vol. 37, no. 17-18, pp. 1491–1502, 2010. View at Publisher · View at Google Scholar
  18. H. Bai, M. Arcak, and J. T. Wen, “Adaptive motion coordination: using relative velocity feedback to track a reference velocity,” Automatica, vol. 45, no. 4, pp. 1020–1025, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Sarlette, R. Sepulchre, and N. E. Leonard, “Autonomous rigid body attitude synchronization,” Automatica, vol. 45, no. 2, pp. 572–577, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. D. V. Dimarogonas, P. Tsiotras, and K. J. Kyriakopoulos, “Leader-follower cooperative attitude control of multiple rigid bodies,” Systems and Control Letters, vol. 58, no. 6, pp. 429–435, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  21. R. Ortega, A. Loría, P. J. Nicklasson, and H. Sira-Ramírez, Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications, Comunications and Control Engineering, Springer, London, UK, 1998.
  22. B. Paden and R. Panja, “Globally asymptotically stable ’PD+’ controller for robot manipulators,” International Journal of Control, vol. 47, no. 6, pp. 1697–1712, 1988. View at Google Scholar · View at Scopus
  23. J. J. E. Slotine and W. Li, “On the adaptive control of robot manipulators,” International Journal of Robotics Research, vol. 6, no. 3, pp. 49–59, 1987. View at Google Scholar · View at Scopus
  24. F. Mazenc, L. Praly, and W. P. Dayawansa, “Global stabilization by output feedback: examples and counterexamples,” Systems and Control Letters, vol. 23, no. 2, pp. 119–125, 1994. View at Google Scholar · View at Scopus
  25. A. Loría and E. Panteley, “Cascaded nonliear time-varying systems: analysis and design,” in Advanced Topics in Control Systems Theory, vol. 311 of Lecture Notes in Control and Information Sciences, chapter 2, pp. 23–64, Springer, Berlin, Germany, 2005. View at Google Scholar
  26. T. I. Fossen and O.-E. Fjellstad, “Cascaded adaptive control of ocean vehicles with significant actuator dynamics,” in Proceedings of the IFAC World Congress, Sydney, Australia, 1993.
  27. A. Loría, H. Nijmeijer, and O. Egeland, “Cascaded synchronization of two pendula,” in Proceedings of the American Control Conference, 1998.
  28. M. Jankovic, R. Sepulchre, and P. V. Kokotovic, “Constructive Lyapunov stabilization of nonlinear cascade systems,” IEEE Transactions on Automatic Control, vol. 41, no. 12, pp. 1723–1735, 1996. View at Google Scholar · View at Scopus
  29. Z. P. Jiang and I. M. Y. Mareels, “A small-gain control method for nonlinear cascaded systems with dynamic uncertainties,” IEEE Transactions on Automatic Control, vol. 42, no. 3, pp. 292–308, 1997. View at Google Scholar · View at Scopus
  30. E. Panteley and A. Loria, “On global uniform asymptotic stability of nonlinear time-varying systems in cascade,” Systems and Control Letters, vol. 33, no. 2, pp. 131–138, 1998. View at Google Scholar · View at Scopus
  31. A. Chaillet and A. Loría, “Uniform semiglobal practical asymptotic stability for non-autonomous cascaded systems and applications,” Automatica, vol. 44, no. 2, pp. 337–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Chaillet, On stability and robustness of nonlinear systems: applications to cascaded systems, Ph.D. thesis, UFR Scientifique D’Orsay, Paris, France, 2006.
  33. O. Egeland and J. T. Gravdahl, Modeling and Simulation for Automatic Control, Marine Cybernetics, Trondheim, Norway, 2002.
  34. M. J. Sidi, Spacecraft Dynamics and Control, Cambridge University Press, New York, NY, USA, 1997.
  35. W. Hahn, Stability of Motion, Springer, Berlin, Germany, 1967.
  36. O. Montenbruck and E. Gill, Satellite Orbits. Models, Methods, Applications, Springer, Berlin, Germany, 1st edition, 2001.
  37. J. R. Wertz, Ed., Spacecraft Attitude Determination and Control, Kluwer Academic Publishers, London, UK, 1978.
  38. Ø. Hegrenæs, J. T. Gravdahl, and P. Tøndel, “Spacecraft attitude control using explicit model predictive control,” Automatica, vol. 41, no. 12, pp. 2107–2114, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  39. T. I. Fossen, Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles, Marine Cybernetics, Trondheim, Norway, 2002.
  40. J. T. Y. Wen and K. Kreutz-Delgado, “The attitude control problem,” IEEE Transactions on Automatic Control, vol. 36, no. 10, pp. 1148–1162, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  41. A. Loría, E. Panteley, D. Popovic, and A. R. Teel, “δ-persistency of excitation: a necessary and sufficient condition for uniform attractivity,” in Proceedings of the 41st IEEE Conference on Decision and Control, vol. 3, pp. 3506–3511, Las Vegas, Nev, USA, December 2002.