Table of Contents Author Guidelines Submit a Manuscript
International Journal of Aerospace Engineering
Volume 2011 (2011), Article ID 243268, 17 pages
http://dx.doi.org/10.1155/2011/243268
Review Article

Vision-Based Tracking of Uncooperative Targets

1School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
2Department of Systems Control and Flight Dynamics, ONERA, 31055 Toulouse, France
3Guided Systems Technologies, Stockbridge, GA 30281, USA

Received 2 July 2010; Revised 6 November 2010; Accepted 28 February 2011

Academic Editor: Yu Gu

Copyright © 2011 Suresh K. Kannan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. A. Proctor, E. N. Johnson, and T. B. Apker, “Vision-only control and guidance for aircraft,” Journal of Field Robotics, vol. 23, no. 10, pp. 863–890, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. DeWagter,, A. Proctor, and E. N. Johnson, “Vision-only aircraft flight control,” in Proceedings of the 22nd Digital Avionics Systems Conference, Indianapolis, Ind, USA, October 2003.
  3. O. Shakernia, R. Vidal, C. Sharp, Y. Ma, and S. Sastry, “Multiple view motion estimation and control for landing an unmanned aerial vehicle,” in Proceedings of the International Conference on Roboticsand Automation, Washington, DC, USA, May 2002.
  4. F. Caballero, L. Merino, J. Ferruz, and A. Ollero, “Vision-based odometry and SLAM for medium and high altitude flying UAVs,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 54, no. 1–3, pp. 137–161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Kendoul, K. Nonami, I. Fantoni, and R. Lozano, “An adaptive vision-based autopilot for mini flying machines guidance, navigation and control,” Autonomous Robots, vol. 27, no. 3, pp. 165–188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J.-C. Ha, C. Alvino, G. Pryor, M. Niethammer, E. Johnson, and A. Tannenbaum, “Active contours and optical flow for automatic tracking of flying vehicles,” in Proceedings of the American Control Conference (AAC '04), pp. 3441–3446, July 2004.
  7. J. A. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 4, pp. 1591–1595, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. R. A. Singer, “Estimating optimal tracking filter performance for manned maneuvering targets,” IEEE Transactions on Aerospace and Electronic Systems, vol. 6, no. 4, pp. 473–483, 1970. View at Google Scholar · View at Scopus
  9. E. N. Johnson and S. K. Kannan, “Adaptive trajectory control for autonomous helicopters,” Journal of Guidance, Control, and Dynamics, vol. 28, no. 3, pp. 524–538, 2005. View at Google Scholar · View at Scopus
  10. J. Ha, C. Alvino, G. Pryor, M. Niethammer, E. Johnson, and A. Tannenbaum, “Active contours and optical flow for automatic tracking of flying vehicles,” in Proceedings of the American Control Conference (AAC '04), pp. 3441–3446, Boston, Mass, USA, July 2004.
  11. J. Ha, E. N. Johnson, and A. Tannenbaum, “Real-time visual tracking using geometric active contours for the navigation and control of UAVs,” in Proceedings of the American Control Conference (ACC '07), pp. 365–370, July 2007. View at Publisher · View at Google Scholar
  12. E. N. Johnson, A. J. Calise, Y. Watanabe, J. Ha, and J. C. Neidhoefer, “Real-time vision-based relative aircraft navigation,” Journal of Aerospace Computing, Information and Communication, vol. 4, no. 4, pp. 707–738, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. V. J. Aidala and S. E. Hammel, “Utilization of modified polar coordinates for bearings-only tracking,” IEEE Transactions on Automatic Control, vol. 28, no. 3, pp. 283–294, 1983. View at Google Scholar · View at Scopus
  14. L. Matthies, T. Kanade, and R. Szeliski, “Kalman filter-based algorithms for estimating depth from image sequences,” International Journal of Computer Vision, vol. 3, no. 3, pp. 209–238, 1989. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Watanabe, E. N. Johnson, and A. J. Calise, “Optimal 3-D guidance from a 2-D vision sensor,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, pp. 319–328, August 2004.
  16. A. J. Calise, “Enforcing an algebraic constraint in extended Kalman filter design,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, pp. 1879–1891, Indianapolis, Ind, USA, August 2007.
  17. E. N. Johnson and S. K. Kannan, “Adaptive flight controller for an autonomous unnmanned helicopter,” in Proceedings of the AIAA Guidance, Navigation and Control Conference, 2002.
  18. E. N. Johnson, M. A. Turbe, A. D. Wu, S. K. Kannan, and J. C. Neidhoefer, “Flight test results of autonomous fixed-wing UAV transitions to and from stationary hover,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, pp. 5144–5167, August 2006.
  19. E. N. Johnson, Y. Watanabe, J. Ha, A. J. Calise, and A. R. Tannenbaum, “Image processor, estimation, guidance, and flight test of vision-based formation flight,” in Proceedings of the 3rd International Symposium on Innovative Aerial/Space Flyer Systems, 2006.
  20. E. W. Frew and S. M. Rock, “Trajectory generation for constant velocity target motion estimation using monocular vision,” in Proceedings of the AIAA Guidance, Navigation and Control Conference, 2003.
  21. G. L. Mariottini, F. Morbidi, D. Prattichizzo et al., “Vision-based localization for leader-Follower formation control,” IEEE Transactions on Robotics, vol. 25, no. 6, pp. 1431–1438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. G. L. Mariottini, S. Martini, and M. B. Egerstedt, “A switching active sensing strategy to maintain observability for vision-based formation control,” in Proceedings of the IEEE International Conference on Roboticsand Automation, Kobe, Japan, May 2009.
  23. A. Bicchi, D. Prattichizzo, A. Marigo, and A. Balestrino, “On the observability of mobile vehicles localization,” in Proceedings of the IEEE Mediterranean Conference on Control and Automation, Sardinia, Italy, June 1998.
  24. E. Bryson and Y. Ho, Applied Optimal Control, Taylor & Francis, London, UK, 1975.
  25. X. R. Li and V. P. Jilkov, “Survey of maneuvering target tarcking, part I: dynamic models,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1333–1364, 2003. View at Google Scholar
  26. Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation wtih Applications to Tracking and Navigation: Theory, Algorithms and Software, Wiley-Interscience, New York, NY, USA, 2001.
  27. H. A. P. Blom and Y. Bar-Shalom, “The Interacting multiple-model algorithm for systems with Markovian switching coefficients,” IEEE Transactions on Automatic Control, vol. 33, no. 8, pp. 780–783, 1988. View at Publisher · View at Google Scholar · View at Scopus
  28. R. J. Sattigeri and A. J. Calise, “Neural network augmented kalman filtering in the presence of unknown system inputs,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colo, USA, August 2006.
  29. R. J. Sattigeri, E .N. Johnson, A. J. Calise, and J.-C. Ha, “Vision-based target tracking with adaptive target state estimator,” in Proceedings of the AIAA Guidance Navigation and Control Conference, Hilton Head, SC, USA, August 2007.
  30. R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, John Wiley & Sons, New York, NY, USA, 1997.
  31. R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the ASME- Journal of Basic Engineering, vol. 82, pp. 35–45, 1960. View at Google Scholar
  32. G. Welch and G. Bishop, “An introduction to the kalman filter,” Tech. Rep. TR 95-041, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2004. View at Google Scholar
  33. B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications, Artech House, Norwood, Mass, USA, 2004.
  34. P. Zarchan and H. Musoff, Fundamentals of Kalman Filtering: A Practical Approach, AIAA, Reston, Va, USA, 3rd edition, 2004.