Table of Contents Author Guidelines Submit a Manuscript
International Journal of Aerospace Engineering
Volume 2011, Article ID 308245, 18 pages
http://dx.doi.org/10.1155/2011/308245
Research Article

Guidance Navigation and Control for Autonomous Multiple Spacecraft Assembly: Analysis and Experimentation

1Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
2Department of Mechanical and Aerospace Engineering and Space Systems Academic Group, Naval Postgraduate School, Monterey, CA 93943-5100, USA
3Dipartimento di Ingegneria Aerospaziale e Astronautica, Scuola di Ingegneria Aerospaziale, Universitá di Roma “La Sapienza”, 00138 Roma, Italy
4Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, CA 93943-5100, USA
5Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064, USA

Received 31 August 2010; Revised 22 October 2010; Accepted 23 December 2010

Academic Editor: Giampiero Campa

Copyright © 2011 Riccardo Bevilacqua et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Frost and M. J. Balas, “Adaptive key component controllers for evolving systems,” in Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, USA, August 2008.
  2. M. J. Balas and S. A. Frost, “Evolving systems: a theoretical foundation,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colo, USA, August 2006.
  3. T. S. VanZwieten and M. J. Balas, “Evolving systems: inheriting stability with decentralized adaptive control,” in Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, SC, USA, August 2007.
  4. S. A. Frost and M. J. Balas, “Stabilizing controllers for evolving systems with application to flexible space structures,” in Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, SC, USA, August 2007.
  5. S. Dong, K. Allen, P. Bauer et al., “Self-assembling wireless autonomously reconfigurable module design concept,” Acta Astronautica, vol. 62, no. 2-3, pp. 246–256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Bevilacqua, J. S. Hall, J. Homing, and M. Romano, “Ad hoc wireless networking and shared computation for autonomous multirobot systems,” Journal of Aerospace Computing, Information and Communication, vol. 6, no. 5, pp. 328–353, 2009. View at Publisher · View at Google Scholar
  7. R. Bevilacqua and M. Romano, “Fuel-optimal spacecraft rendezvous with hybrid on-off continuous and impulsive thrust,” Journal of Guidance, Control, and Dynamics, vol. 30, no. 4, pp. 1175–1178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. A. Singer, “Estimating optimal tracking filter performance for manned maneuvering targets,” IEEE Transactions on Aerospace and Electronic Systems, vol. 6, no. 4, pp. 473–483, 1970. View at Google Scholar · View at Scopus
  9. Y. T. Chan and F. Couture, “Manoeuvre detection and track correction by input estimation,” IEE Proceedings F, vol. 140, no. 1, pp. 21–28, 1993. View at Google Scholar · View at Scopus
  10. Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation, John Wiley & Sons, New York, NY, USA, 2001.
  11. Y. Bar-shalom and K. Birmiwal, “Variable dimension filtering for maneuvering target tracking,” IEEE Transactions on Aerospace and Electronic Systems, vol. 18, no. 5, pp. 621–629, 1982. View at Google Scholar · View at Scopus
  12. P. L. Bogler, “Tracking a maneuvering target using input estimation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 23, no. 3, pp. 298–310, 1987. View at Google Scholar · View at Scopus
  13. H. Khaloozadeh and A. Karsaz, “A new state augmentation for maneuvering targets detection,” in Proceedings of International Conference on Signal Processing and Communications (SPCOM '04), pp. 65–69, December 2004. View at Scopus
  14. M. H. Bahari, A. Karsaz, and M. B. Naghibi-S, “Intelligent error covariance matrix resetting for maneuver target tracking,” Journal of Applied Sciences, vol. 8, no. 12, pp. 2279–2285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. H. Bahari and N. Pariz, “High maneuvering target tracking using an input estimation technique associated with fuzzy forgetting factor,” Scientific Research and Essays, vol. 4, no. 10, pp. 936–944, 2009. View at Google Scholar · View at Scopus
  16. V. Pellegrini, R. Bevilacqua, M. Romano, and F. Curti, “Spacecraft proximity navigation and autonomous assembly based on augmented state estimation: analysis and experiments,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, August 2010.
  17. S. B. McCamish, M. Romano, S. Nolet, C. M. Edwards, and D. W. Miller, “Flight testing of multiple-spacecraft control on SPHERES during close-proximity operations,” Journal of Spacecraft and Rockets, vol. 46, no. 6, pp. 1202–1213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. http://mathworks.com/matlabcentral/fileexchange/2651.
  19. P. Zarchan and H. Musoff, Fundamental of Kalman Filtering: A Practical Approach, AIAA, Reston, Va, USA, 2009.
  20. M. Romano, D. A. Friedman, and T. J. Shay, “Laboratory experimentation of autonomous spacecraft approach and docking to a collaborative target,” Journal of Spacecraft and Rockets, vol. 44, no. 1, pp. 164–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. L. Schwartz, M. A. Peck, and C. D. Hall, “Historical review of air-bearing spacecraft simulators,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 4, pp. 513–522, 2003. View at Google Scholar · View at Scopus
  22. F. Curti, M. Romano, and R. Bevilacqua, “Lyapunov-based thrusters' selection for spacecraft control: analysis and experimentation,” Journal of Guidance, Control, and Dynamics, vol. 33, no. 4, pp. 1143–1160, 2010. View at Publisher · View at Google Scholar
  23. R. Bevilacqua, T. Lehmann, and M. Romano, “Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft,” Acta Astronautica, vol. 68, no. 7-8, pp. 1260–1275, 2011. View at Publisher · View at Google Scholar
  24. https://www.rtai.org/RTAILAB/RTAI-Lab-tutorial.pdf.
  25. http://www.mathworks.com/products/xpctarget/.
  26. L. Dozio and P. Mantegazza, “Real time distributed control system using RTAI,” in Proceedings of the 6th IEE International Symposium on Object-Oriented Real-Time Distributed Computing, May 2003.
  27. G. Quaranta and P. Mantegazza, “Using MATLAB-simulink RTW to build real time control applications in user space with RTAI-LXRT,” in Realtime Linux Workshop, Milan, Italy, 2001.
  28. S. Ricci and A. Scotti, “Aeroelastic testing on a three surface airplane,” in Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, pp. 7131–7147, Newport, RI, USA, May 2006.
  29. L. Dozio, A. Toso, W. Corbetta, E. Vigoni, and G. Ghiringhelli, “Comparison of feedback and feedforward strategies for active structural—acoustic control of broadband sound transmission into a cavity,” in Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference, 28th AIAA Aeroacoustics Conference, 2007.
  30. M. G. Perhinschi, M. R. Napolitano, G. Campa, B. Seanor, S. Gururajan, and G. Yu, “Design and flight testing of intelligent flight control laws for the WVU YF-22 model aircraft,” in Proceedings of AIAA Guidance, Navigation, and Control Conference, pp. 5925–5936, San Francisco, Calif, USA, August 2005.
  31. Y. Zheng, B. J. Martin, and N. Villaume, “VERSE—virtual equivalent real-time simulation environment,” in Proceedings of AIAA Modeling and Simulation Technologies Conference, pp. 368–376, San Francisco, Calif, USA, August 2005.
  32. W. H. Clohessy and R. S. Wiltshire, “Terminal guidance system for satellite rendezvous,” Journal of the Aerospace Sciences, vol. 27, no. 9, pp. 653–658, 1960. View at Google Scholar
  33. S. D'Amico, E. Gill, M. Garcia, O. Montenbruck, and E. Gill, “GPS-based real-time navigation for the PRISMA formation flying mission,” in Proceedings of the 3rd ESA Workshop on Satellite Navigation User Equipment Technologies (NAVITEC '06), Noordwijk, The Netherlands, December 2006.
  34. S. D'Amico, J. S. Ardaens, and O. Montenbruck, “Navigation of formation flying spacecraft using GPS: the PRISMA technology demonstration,” in Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION-GNSS '09), pp. 2250–2264, Savannah, Ga, USA, September 2009. View at Scopus
  35. K. Ogata, Discrete-Time Control Systems, Prentice-Hall, New York, NY, USA, 2nd edition, 1995.
  36. C. Lugini and M. Romano, “A ballistic-pendulum test stand to characterize small cold-gas thruster nozzles,” Acta Astronautica, vol. 64, no. 5-6, pp. 615–625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. http://aa.nps.edu/~mromano/Movies4Web/GNC10_Video1.flv.
  38. http://aa.nps.edu/~mromano/Movies4Web/GNC10_Video2.flv.