Table of Contents Author Guidelines Submit a Manuscript
International Journal of Aerospace Engineering
Volume 2011, Article ID 874375, 7 pages
http://dx.doi.org/10.1155/2011/874375
Research Article

Study on Ductility of Ti Aluminide Using Artificial Neural Network

1Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum 695022, India
2National Institute of Hydrology, Roorkee 247667, India
3Departement of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee 247667, India

Received 25 March 2011; Revised 7 August 2011; Accepted 16 August 2011

Academic Editor: Kenneth M. Sobel

Copyright © 2011 R. K. Gupta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. A. Lipsitt, “High temperature ordered intermetallic alloys,” in Materials Research Society Symposium Proceedings, C. C. Koch, C. T. Liu, and N. S. Stolloff, Eds., vol. 39, p. 351, 1985. View at Google Scholar
  2. A. I. Taub and R. L. Fleischer, “Intermetallic compounds for high-temperature structural use,” Science, vol. 243, no. 4891, pp. 616–621, 1989. View at Google Scholar · View at Scopus
  3. S. C. Huang and J. C. Cheshut, Gamma Ti Al and Its Alloys-Intermetallic Compounds, vol. 2, John Wiley & Sons, Editors: J. H. Westbrook and R. L. Fleischer, 1994.
  4. U. R. Kattner, J. C. Lin, and Y. A. Chang, “Thermodynamic assessment and calculation of the Ti-Al system,” Metallurgical Transactions, A, vol. 23, no. 8, pp. 2081–2090, 1992. View at Google Scholar · View at Scopus
  5. Y. W. Kim and F. H. Froes, “High temperature aluminides and intermetallics,” in The Minerals, Metals & Materials Society, S. H. Whang, C. T. Liu, D. P. Pope, and J. O. Stiegler, Eds., p. 458, 1990. View at Google Scholar
  6. Y. W. Kim and F. H. Froes, “High temperature aluminides and intermetallics,” in The Minerals, Metals & Materials Society, S. H. Whang, C. T. Liu, D. P. Pope, and J. O. Stiegler, Eds., p. 456, 1990. View at Google Scholar
  7. S. C. Huang, E. L. Hall, and D. S. Shih, “Microstructure and ductility of TiAl alloys modified by Cr additions,” ISIJ International, vol. 31, no. 10, pp. 1100–1105, 1991. View at Google Scholar · View at Scopus
  8. Y. W. Kim, “Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy,” Acta Metallurgica Et Materialia, vol. 40, no. 6, pp. 1121–1134, 1992. View at Google Scholar
  9. S. C. Huang and E. L. Hall, “Characterization of the effect of vanadium additions to TiAl base alloys,” Acta Metallurgica Et Materialia, vol. 39, no. 6, pp. 1053–1060, 1991. View at Google Scholar · View at Scopus
  10. J. N. Wang and K. Xie, “Refining of coarse lamellar microstructure of TiAl alloys by rapid heat treatment,” Intermetallics, vol. 8, no. 5-6, pp. 545–548, 2000. View at Google Scholar · View at Scopus
  11. V. Seetharaman and S. L. Semiatin, “Microstructures and tensile properties of Ti—45.5Al—2Nb—2Cr rolled sheets,” Materials Science and Engineering A, vol. 299, no. 1-2, pp. 195–209, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Beschliesser, A. Chatterjee, A. Lorich et al., “Designed fully lamellar microstructures in a γ-TiAl based alloy: Adjustment and microstructural changes upon long-term isothermal exposure at 700 and 800 °C,” Materials Science and Engineering A, vol. 329-331, pp. 124–129, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Imayev, R. Imayev, and A. Kuznetsov, “Mechanical properties of thermomechanically treated Ti-rich γ+α2 titanium aluminide alloys,” Scripta Materialia, vol. 49, no. 10, pp. 1047–1052, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Clemens, A. Bartels, S. Bystrzanowski et al., “Grain refinement in γ-TiAl-based alloys by solid state phase transformations,” Intermetallics, vol. 14, no. 12, pp. 1380–1385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Perez-Bravo, I. Madariaga, K. Ostolaza, and M. Tello, “Microstructural refinement of a TiAl alloy by a two step heat treatment,” Scripta Materialia, vol. 53, no. 10, pp. 1141–1146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. N. Wang, J. Yang, and Y. Wang, “Grain refinement of a Ti—47Al—8Nb—2Cr alloy through heat treatments,” Scripta Materialia, vol. 52, no. 4, pp. 329–334, 2005. View at Publisher · View at Google Scholar
  17. E. H. Mamdani and S. Assilian, “Experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1–13, 1975. View at Google Scholar · View at Scopus
  18. H. R. Maier and G. C. Dandy, “Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications,” Environmental Modelling and Software, vol. 15, no. 1, pp. 101–124, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. R. K. Gupta, R. Mehta, V. Agarwala, B. Pant, and P. P. Sinha, “Ductility prediction of Ti aluminide intermetallics through neuro-fuzzy set approach,” Transactions of the Indian Institute of Metals, vol. 63, no. 6, pp. 833–839, 2010. View at Publisher · View at Google Scholar
  20. B. Kosko, Neural Networks and Fuzzy Systems, Prentice Hall of India, New Delhi, India, 1996.
  21. A. Y. Badmos, H. K. D. H. Bhadeshia, and D. J. C. MacKay, “Tensile properties of mechanically alloyed oxide dispersion strengthened iron alloys. Part 1: neural network models,” Materials Science and Technology, vol. 14, no. 8, pp. 793–809, 1998. View at Google Scholar
  22. S. Calcaterra, G. Campana, and L. Tomesani, “Prediction of mechanical properties in spheroidal cast iron by neural networks,” Journal of Materials Processing Technology, vol. 104, no. 1, pp. 74–80, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. J. McBride, S. Malinov, and W. Sha, “Modelling tensile properties of gamma-based titanium aluminides using artificial neural network,” Materials Science and Engineering A, vol. 384, no. 1-2, pp. 129–137, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. H. S. Rao and A. Mukherjee, “Artificial neural networks for predicting the macromechanical behaviour of ceramic-matrix composites,” Computational Materials Science, vol. 5, no. 4, pp. 307–322, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Malinov and W. Sha, “Application of artificial neural networks for modelling correlations in titanium alloys,” Materials Science and Engineering A, vol. 365, no. 1-2, pp. 202–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. R. P. Lippmann, “Introduction to computing with neural nets,” IEEE ASSP Magazine, vol. 4, no. 2, pp. 4–22, 1987. View at Google Scholar · View at Scopus
  27. J. E. Nash and J. V. Sutcliffe, “River flow forecasting through conceptual models part I—a discussion of principles,” Journal of Hydrology, vol. 10, no. 3, pp. 282–290, 1970. View at Google Scholar · View at Scopus
  28. S. C. Huang, “Microstructures and property tradeoffs in wrought TiAl-base alloys,” Metallurgical Transactions A, vol. 23, no. 1, pp. 375–377, 1992. View at Publisher · View at Google Scholar · View at Scopus
  29. G. A. Salishchev, R. M. Imayev, O. N. Senkov, and F. H. Froes, “Microstructural control in Ti-Al for enhanced mechanical properties,” Journal of the Minerals, vol. 52, no. 12, pp. 46–48, 2000. View at Google Scholar · View at Scopus
  30. R. Imayev, V. Imayev, and G. Salishchev, “Effects of grain size and grain boundary structure on yield strength of micro- and submicrocrystalline TiAl,” Scripta Metallurgica et Materiala, vol. 29, no. 5, pp. 719–724, 1993. View at Google Scholar · View at Scopus
  31. R. Imayev, V. Imayev, and G. Salishchev, “Effect of grain size on ductility and anomalous yield strength of micro- and submicrocrystalline TiAl,” Scripta Metallurgica et Materiala, vol. 29, no. 5, pp. 713–718, 1993. View at Google Scholar · View at Scopus
  32. D. Hu, “Effect of boron addition on tensile ductility in lamellar TiAl alloys,” Intermetallics, vol. 10, no. 9, pp. 851–858, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Tang, B. Huang, W. Liu et al., “A high ductility TiAl alloy made by two-step heat treatment,” Materials Research Bulletin, vol. 38, no. 15, pp. 2019–2024, 2003. View at Publisher · View at Google Scholar · View at Scopus