Table of Contents Author Guidelines Submit a Manuscript
International Journal of Aerospace Engineering
Volume 2012, Article ID 836250, 22 pages
http://dx.doi.org/10.1155/2012/836250
Research Article

Preliminary Design of Debris Removal Missions by Means of Simplified Models for Low-Thrust, Many-Revolution Transfers

1School of Engineering, University of Glasgow, James Watt South Building, Glasgow G12 8QQ, UK
2Department of Mechanical & Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK

Received 8 December 2011; Accepted 23 February 2012

Academic Editor: Alessandro A. Quarta

Copyright © 2012 Federico Zuiani and Massimiliano Vasile. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Kessler, N. L. Johnson, J. C. Liou, and M. Matney, “The kessler syndrome: implications to future space operations,” in Proceedings of the 33rd Annual American Astronautical Society, Rocky Mountain Section, Guidance and Control Conference, pp. 6–10, 2010.
  2. Committee on Peaceful Uses of Outer Space (COPOUS), Scientific and technical sub-committee, Working group on Space debris: Progress report of the working group on space, U.N. Doc. A/AC.105/C.1/L.284, 2006.
  3. Inter-Agency Space Debris Coordination Committee: IADC space debris mitigation guidelines, revision 1, 2007.
  4. B. Bischof, L. Kerstein, J. Starke et al., “Roger-Robotic geostationary orbit restorer,” in Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation, 2004.
  5. C. R. Phipps and J. P. Reilly, “ORION: clearing near-Earth space debris in two years using a 30-kW repetitively-pulsed laser,” in XI International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, vol. 3092 of Proceedings of SPIE, pp. 728–731, Edinburgh, UK, August 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Vasile, C. Maddock, and C. Saunders, “Orbital debris removal with solar concentrators,” in Proceedings of the 61st International Astronautical Congress (IAC '10), Prague, Czech Republic, 2010.
  7. C. Bombardelli, J. Herrera, A. Iturri, and J. Pelaez, “Space debris removal with bare electrodynamic tethers,” in Proceedings of the 20th AAS/AIAA Spaceflight Mechanics Meeting, San Diego, Calif, USA, 2010.
  8. C. Lücking, C. Colombo, and C. McInnes, “A passive high altitude deorbiting strategy,” in Proceedings of the 25th Annual IAA/USU Conference on Small Satellites, 2011.
  9. C. Bombardelli and J. Peláez, “Ion beam shepherd for contactless space debris removal,” Journal of Guidance, Control, and Dynamics, vol. 34, no. 3, pp. 916–920, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Ruault, M. C. Desjean, C. Bonnal, and P. Bultel, “Active Debris Removal (ADR): from identification of problematics to in flight demonstration preparation,” in Proceedings of the 1st European Workshop On Active Debris Removal, 2010.
  11. S. Kitamura, “Large space debris reorbiter using ion beam irradiation,” in Proceedings of the 61st International Astronautical Congress (IAC '10), Prague, Czech Republic, 2010.
  12. J. C. Liou and N. L. Johnson, “A sensitivity study of the effectiveness of active debris removal in LEO,” Acta Astronautica, vol. 64, no. 2-3, pp. 236–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Kechichian, “Low-thrust eccentricity-constrained orbit raising,” Journal of Spacecraft and Rockets, vol. 35, no. 3, pp. 327–335, 1998. View at Google Scholar · View at Scopus
  14. J. A. Kechichian, “Orbit raising with low-thrust tangential acceleration in presence of earth shadow,” Journal of Spacecraft and Rockets, vol. 35, no. 4, pp. 516–525, 1998. View at Google Scholar · View at Scopus
  15. L. Casalino and G. Colasurdo, “Improved Edelbaum's approach to optimize low earth/geostationary orbits low-thrust transfers,” Journal of Guidance, Control, and Dynamics, vol. 30, no. 5, pp. 1504–1510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Geffroy and R. Epenoy, “Optimal low-thrust transfers with constraints—Generalization of averaging techniques,” Acta Astronautica, vol. 41, no. 3, pp. 133–149, 1997. View at Google Scholar · View at Scopus
  17. A. E. Petropoulos, “Some analytic integrals of the averaged variational equations for a thrusting spacecraft,” Interplanetary Network Progress Report, vol. 150, pp. 1–29, 2002. View at Google Scholar
  18. G. Yang, “Direct Optimization of Low-thrust Many-revolution Earth-orbit Transfers,” Chinese Journal of Aeronautics, vol. 22, no. 4, pp. 426–433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Zuiani, M. Vasile, A. Palmas, and G. Avanzini, “Direct transcription of low-thrust trajectories with finite trajectory elements,” in Proceedings of the 61st International Astronautical Congress (IAC '10), pp. 8420–8430, October 2010. View at Scopus
  20. R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, 1999.
  21. A. Palmas, Approximations of low-thrust trajectory arcs by means of perturbative approaches, M.S. thesis, Politecnico di Torino, 2010.
  22. M. Vasile and F. Zuiani, “Multi-agent collaborative search: an agent-based memetic multi-objective optimization algorithm applied to space trajectory design,” Proceedings of the Institution of Mechanical Engineers, Part G, vol. 255, no. 1, pp. 1211–1227, 2011. View at Google Scholar
  23. E. A. Minisci and G. Avanzini, “Orbit transfer manoeuvres as a test benchmark for comparison metrics of evolutionary algorithms,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '09), pp. 350–357, May 2009. View at Publisher · View at Google Scholar · View at Scopus