Table of Contents Author Guidelines Submit a Manuscript
International Journal of Aerospace Engineering
Volume 2015 (2015), Article ID 325724, 19 pages
http://dx.doi.org/10.1155/2015/325724
Research Article

Knowledge-Based Shape Optimization of Morphing Wing for More Efficient Aircraft

Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy

Received 31 March 2015; Revised 22 July 2015; Accepted 31 August 2015

Academic Editor: Ning Qin

Copyright © 2015 Alessandro De Gaspari and Sergio Ricci. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Bréguet, “Aerodynamic efficiency and the reduction of air transport costs,” Aeronautical Journal, vol. 26, pp. 307–313, 1922. View at Google Scholar
  2. M. Cavcar, “Bréguet range equation?” Journal of Aircraft, vol. 43, no. 5, pp. 1542–1544, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. De Gaspari, S. Ricci, L. Riccobene, and A. Scotti, “Active aeroelastic control over a multisurface wing: modeling and wind-tunnel testing,” AIAA Journal, vol. 47, no. 9, pp. 1995–2010, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. H. P. Monner, M. Kintscher, T. Lorkowski, and S. Storm, “Design of a smart droop nose as leading edge high lift system for transportation aircrafts,” in Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (SDM '09), AIAA 2009-2128, Palm Springs, Calif, USA, May 2009.
  5. J. J. Spillman, “The use of variable camber to reduce drag, weight and costs of transport aircraft,” Aeronautical Journal, vol. 96, no. 951, pp. 1–9, 1992. View at Google Scholar · View at Scopus
  6. A. McGowan, “Overview: morphing activities in the USA,” in Proceedings of the Advanced Course on Morphing Aircraft Materials, Mechanisms and Systems, Lisbon, Portugal, November 2008.
  7. J. N. Kudva, “Overview of the DARPA smart wing project,” Journal of Intelligent Material Systems and Structures, vol. 15, no. 4, pp. 261–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Wagg, I. Bond, P. Weaver, and M. Friswell, Adaptive Structures: Engineering Applications, John Wiley & Sons, 2007.
  9. C. Thill, J. Etches, I. Bond, K. Potter, and P. Weaver, “Morphing skins,” The Aeronautical Journal, vol. 38, no. 10, 2008. View at Google Scholar
  10. D. Steenhuizen and M. van Tooren, “The implementation of a knowledge-based framework for the aerodynamic optimization of a morphing wing device,” Advanced Engineering Informatics, vol. 26, no. 2, pp. 207–218, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Molinari, A. F. Arrieta, and P. Ermanni, “Aero-structural optimization of 3-D adaptive wings with embedded smart actuators,” in Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Boston, Mass, USA, April 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. P. D. Ciampa, T. Zill, T. Pfeiffer, and B. Nagel, “A functional shape parametrization approach for preliminary optimization of unconventional aircraft,” in Proceedings of the 3rd CEAS Air & Space Conference—21st AIDAA Congress, pp. 1513–1524, Venice, Italy, 2011.
  13. S. E. Gano, V. M. Pérez, J. E. Renaud, and S. M. Batill, “Multilevel variable fidelity optimization of a morphing unmanned aerial vehicle,” in Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (AIAA '04), Palm Springs, Calif, USA, April 2004.
  14. S. Barbarino, O. Bilgen, R. M. Ajaj, M. I. Friswell, and D. J. Inman, “A review of morphing aircraft,” Journal of Intelligent Material Systems and Structures, vol. 22, no. 9, pp. 823–877, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. De Gaspari and S. Ricci, “A two-level approach for the optimal design of morphing wings based on compliant structures,” Journal of Intelligent Material Systems and Structures, vol. 22, no. 10, pp. 1091–1111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. C. O. Johnston, D. A. Neal, L. D. Wiggins, H. H. Robertshaw, W. H. Mason, and D. J. Inman, “A model to compare the flight control energy requirements of morphing and conventionally actuated wings,” in Proceedings of the 11th AIAA/ASME/AHS Adaptive Structures Conference (AIAA '03), Norfolk, Va, USA, April 2003.
  17. B. C. Prock, T. A. Weisshaar, and W. A. Crossley, “Morphing airfoil shape change optimization with minimum actuator energy as an objective,” in Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (AIAA '02), Atlanta, Ga, USA, September 2002.
  18. H. Namgoong, W. A. Crossley, and A. S. Lyrintzis, “Aerodynamic optimization of a morphing airfoil using energy as an objective,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA '06), Reno, Nev, USA, January 2006.
  19. P. Gamboa, J. Vale, F. J. P. Lau, and A. Suleman, “Optimization of a morphing wing based on coupled aerodynamic and structural constraints,” AIAA Journal, vol. 47, no. 9, pp. 2087–2104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. De Gaspari, S. Ricci, and L. Travaglini, “Aeroelastic analysis of a regional aircraft with active camber morphing device,” in Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD '15), Saint Petersburg, Russia, June-July 2015.
  21. A. De Gaspari, A two levels approach for the optimal design of morphing wings based on compliant structures [Ph.D. thesis], Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Milano, Italy, 2010.
  22. A. De Gaspari and S. Ricci, “Application of the active camber morphing concept based on compliant structures to a regional aircraft,” in Industrial and Commercial Applications of Smart Structures Technologies, vol. 9059 of Proceedings of SPIE, pp. 1–21, San Diego, Calif, USA, April 2014. View at Publisher · View at Google Scholar
  23. Y. He and R. K. Agarwal, “Shape optimization of NREL S809 airfoil for wind turbine blades using a multiobjective genetic algorithm,” International Journal of Aerospace Engineering, vol. 2014, Article ID 864210, 13 pages, 2014. View at Publisher · View at Google Scholar
  24. A. Shahrokhi and A. Jahangirian, “Airfoil shape parameterization for optimum Navier-Stokes design with genetic algorithm,” Aerospace Science and Technology, vol. 11, no. 6, pp. 443–450, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  25. T. A. Weisshaar, “Morphing aircraft technology—new shapes for aircraft design,” in Proceedings of the RTO-MP-AVT-141—Multifunctional Structures/Integration of Sensors and Antennas, pp. 1–20, Neuilly-sur-Seine, France, October 2006.
  26. M. Secanell, A. Suleman, and P. Gamboa, “Design of a morphing airfoil using aerodynamic shape optimization,” AIAA Journal, vol. 44, no. 7, pp. 1550–1562, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. B. M. Kulfan, “Universal parametric geometry representation method,” Journal of Aircraft, vol. 45, no. 1, pp. 142–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Deb, “Single and multi-objective optimization using evolutionary computation,” in Proceedings of the 6th International Conference on Hydro-Informatics, pp. 14–35, Singapore, 2004.
  29. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Boston, Mass, USA, 1989.
  30. A. Marco and J.-J. Martínez, “Polynomial least squares fitting in the Bernstein basis,” Linear Algebra and its Applications, vol. 433, no. 7, pp. 1254–1264, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  31. Icem 12.1 Programmers Guide, ANSYS, 2008.
  32. FOI, CFD Flow Solver for Unstructured Grids, Division of Defence and Security, Systems and Technology, Department of Computational Physics, 2009, http://www.foi.se/edge.
  33. S. Lebofsky, E. Ting, and N. Nguyen, “Multidisciplinary drag optimization of reduced stiffness flexible wing aircraft with variable camber continuous trailing edge flap,” in Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 1–27, AIAA SciTech, Kissimmee, Fla, USA, January 2015.
  34. S. Ghasemi, A. Mosahebi, and E. Laurendeau, “A two-dimensional/infinite swept wing navier-stokes solver,” in Proceedings of the 52nd Aerospace Sciences Meeting, pp. 1–11, AIAA SciTech, National Harbor, Md, USA, January 2014.
  35. M. Tomac and D. Eller, “From geometry to CFD grids—an automated approach for conceptual design,” Progress in Aerospace Sciences, vol. 47, no. 8, pp. 589–596, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Tomac and D. Eller, “Steps towards automated robust RANS meshing,” in Proceedings of the 4th CEAS Air & Space Conference, pp. 1–10, Linköping, Sweden, 2013.
  37. B. M. Kulfan, “‘Fundamental’ parametric geometry representations for aircraft component shapes,” in Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, Va, USA, September 2006.
  38. F. Zhu and N. Qin, “Intuitive class/shape function parameterization for airfoils,” AIAA Journal, vol. 52, no. 1, pp. 17–25, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. M. H. Straathof and M. J. L. van Tooren, “Extension to the class–shape–transformation method based on B–splines,” AIAA Journal, vol. 49, no. 4, pp. 780–790, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. A. De Gaspari, S. Ricci, A. Antunes, F. Odaguil, and G. Lima, “Application of active camber morphing concept to a regional aircraft,” in Proceedings of the 22nd AIAA/ASME/AHS Adaptive Structures Conference, AIAA 2014-125, pp. 1–23, National Harbor, Md, USA, January 2014.