Table of Contents Author Guidelines Submit a Manuscript
International Journal of Aerospace Engineering
Volume 2016 (2016), Article ID 7892875, 10 pages
http://dx.doi.org/10.1155/2016/7892875
Research Article

Aero Engine Fault Diagnosis Using an Optimized Extreme Learning Machine

1Department of Aerocraft Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China
2College of Information and Electrical Engineering, Ludong University, Yantai 264025, China

Received 1 June 2015; Accepted 13 October 2015

Academic Editor: Roger L. Davis

Copyright © 2016 Xinyi Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Yang, W. Shen, S. Pang, B. Li, K. Jiang, and Y. Wang, “A novel gas turbine engine health status estimation method using quantum-behaved particle swarm optimization,” Mathematical Problems in Engineering, vol. 2014, Article ID 302514, 11 pages, 2014. View at Publisher · View at Google Scholar
  2. Z. N. S. Vanini, K. Khorasani, and N. Meskin, “Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach,” Information Sciences, vol. 259, pp. 234–251, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Brotherton and T. Johnson, “Anomaly detection for advanced military aircraft using neural networks,” in Proceedings of the IEEE Aerospace Conference, vol. 6, pp. 3113–3123, IEEE, Big Sky, Mont, USA, March 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Ogaji, Y. G. Li, S. Sampath, and R. Singh, “Gas path fault diagnosis of a turbofan engine from transient data using artificial neural networks,” in Proceedings of the 2003 ASME Turbine and Aeroengine Congress, ASME Paper No. GT2003-38423, Atlanta, Ga, USA, June 2003.
  5. L. C. Jaw, “Recent advancements in aircraft engine health management (EHM) technologies and recommendations for the next step,” in Proceedings of the 50th ASME International Gas Turbine & Aeroengine Technical Congress, Reno, Nev, USA, June 2005.
  6. S. Osowski, K. Siwek, and T. Markiewicz, “MLP and SVM networks—a comparative study,” in Proceedings of the 6th Nordic Signal Processing Symposium (NORSIG '04), pp. 37–40, Espoo, Finland, June 2004.
  7. M. Zedda and R. Singh, “Fault diagnosis of a turbofan engine using neural-networks: a quantitative approach,” in Proceedings of the 34th AIAA, ASME, SAE, ASEE Joint Propulsion Conference and Exhibit, AIAA 98-3602, Cleveland, Ohio, USA, July 1998.
  8. C. Romessis, A. Stamatis, and K. Mathioudakis, “A parametric investigation of the diagnostic ability of probabilistic neural networks on turbofan engines,” in Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air, Paper no. 2001-GT-0011, New Orleans, La, USA, June 2001. View at Publisher · View at Google Scholar
  9. A. J. Volponi, H. DePold, R. Ganguli, and C. Daguang, “The use of kalman filter and neural network methodologies in gas turbine performance diagnostics: a comparative study,” Journal of Engineering for Gas Turbines and Power, vol. 125, no. 4, pp. 917–924, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S.-M. Lee, T.-S. Roh, and D.-W. Choi, “Defect diagnostics of SUAV gas turbine engine using hybrid SVM-artificial neural network method,” Journal of Mechanical Science and Technology, vol. 23, no. 1, pp. 559–568, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S.-M. Lee, W.-J. Choi, T.-S. Roh, and D.-W. Choi, “A study on separate learning algorithm using support vector machine for defect diagnostics of gas turbine engine,” Journal of Mechanical Science and Technology, vol. 22, no. 12, pp. 2489–2497, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. G.-B. Huang, Z. Bai, L. L. C. Kasun, and C. M. Vong, “Local receptive fields based extreme learning machine,” IEEE Computational Intelligence Magazine, vol. 10, no. 2, pp. 18–29, 2015. View at Publisher · View at Google Scholar
  14. G.-B. Huang, “What are extreme learning machines? Filling the gap between Frank Rosenblatt's dream and John Von Neumann's puzzle,” Cognitive Computation, vol. 7, no. 3, pp. 263–278, 2015. View at Publisher · View at Google Scholar
  15. Q.-Y. Zhu, A. K. Qin, P. N. Suganthan, and G.-B. Huang, “Evolutionary extreme learning machine,” Pattern Recognition, vol. 38, no. 10, pp. 1759–1763, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Sun, C.-H. Lai, W.-B. Xu, Y. Ding, and Z. Chai, “A modified quantum-behaved particle swarm optimization,” in Proceedings of the 7th International Conference on Computational Science (ICCS '07), pp. 294–301, Beijing, China, May 2007.
  17. M. Xi, J. Sun, and W. Xu, “An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position,” Applied Mathematics and Computation, vol. 205, no. 2, pp. 751–759, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  18. T. Matias, F. Souza, R. Araújo, and C. H. Antunes, “Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine,” Neurocomputing, vol. 129, pp. 428–436, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Han, H.-F. Yao, and Q.-H. Ling, “An improved evolutionary extreme learning machine based on particle swarm optimization,” Neurocomputing, vol. 116, pp. 87–93, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. D.-H. Seo, T.-S. Roh, and D.-W. Choi, “Defect diagnostics of gas turbine engine using hybrid SVM-ANN with module system in off-design condition,” Journal of Mechanical Science and Technology, vol. 23, no. 3, pp. 677–685, 2009. View at Publisher · View at Google Scholar · View at Scopus