Research Article

Research on Microvibrations Generated by a Control Moment Gyroscope on a Flexible Interface Based on a Dynamic Substructure Method

Table 4

Simulation parameters of the coupling system.

SymbolDescriptionValueUnit

mfMass of the flywheel8kg
JfrRadial inertia of the flywheel0.02kg·m2
JfzPolar inertia of the flywheel0.03kg·m2
mgMass of the gimbal10kg
JgrRadial inertia of the gimbal0.06kg·m2
JgzPolar inertia of the gimbal0.09kg·m2
mbMass of the bracket14kg
JbrRadial inertia of the bracket0.1kg·m2
JbzPolar inertia of the bracket0.2kg·m2
kr0Radial stiffness of the flywheel bearing4 × 106N/m
ka0Axial stiffness of the flywheel bearing2 × 107N/m
cr0Radial damping of the flywheel bearing2000N·s/m
ca0Axial damping of the flywheel bearing3000N·s/m
kr1Radial stiffness of the gimbal bearing8 × 106N/m
ka1Axial stiffness of the gimbal bearing4 × 107N/m
cr1Radial damping of the gimbal bearing2000N·s/m
ca1Axial damping of the gimbal bearing3000N·s/m
ksServo dynamic stiffness of the servo system8 × 106N·m/rad
d0Distance from origin o1 to the flywheel bearing0.04m
d1Distance from origin o2 to the gimbal bearing0.055m
hDistance between connection coordinates c1 and o10.06m
UsStatic mass imbalances3.6 × 10−6kg·m
UdDynamic mass imbalances7.02 × 10−8kg·m2
φsInitial phase of the static mass imbalance0rad
φdInitial phase of the dynamic mass imbalance0rad
ΩRotating speed of the flywheel200πrad/s