Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2011 (2011), Article ID 237454, 6 pages
http://dx.doi.org/10.1155/2011/237454
Research Article

A Compact Low-Permittivity Dual-Layer EBG Structure for Mutual Coupling Reduction

1Islamic Azad University, Parand Branch, Tehran, Iran
2Islamic Azad University, Dezful Branch, Dezful, Iran

Received 15 February 2011; Revised 13 April 2011; Accepted 9 June 2011

Academic Editor: Hoi Shun Lui

Copyright © 2011 A. Azarbar and J. Ghalibafan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Pozar and D. H. Schaubert, “Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds,” IEEE Transactions on Antennas and Propagation, vol. 32, no. 10, pp. 1101–1107, 1984. View at Google Scholar · View at Scopus
  2. D. M. Pozar and D. H. Schaubert, “Scan blindness in infinite phase arrays of printed dipoles,” IEEE Transactions on Antennas and Propagation, vol. 32, no. 6, pp. 602–610, 1984. View at Google Scholar · View at Scopus
  3. M. A. Khayat, J. T. Williams, D. R. Jackson, and S. A. Long, “Mutual coupling between reduced surface-wave microstrip antennas,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 10, pp. 1581–1593, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Kumar and K. P. Ray, Broadband Microstrip Antennas, Artech House, Norwood, Mass, USA, 1996.
  5. N. G. Alexopoulos and D. R. Jackson, “Fundamental superstrate (cover) effects on printed circuit antennas,” IEEE Transactions on Antennas and Propagation, vol. 32, no. 8, pp. 807–816, 1984. View at Google Scholar · View at Scopus
  6. M. M. Nikolić, A. R. Djordjević, and A. Nehorai, “Microstrip antennas with suppressed radiation in horizontal directions and reduced coupling,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 11, pp. 3469–3476, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Xin, K. Matsugatani, M. Kim et al., “Mutual coupling reduction of low-profile monopole antennas on high-impedance ground plane,” Electronics Letters, vol. 38, no. 16, pp. 849–850, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. K. S. Min, D. J. Kim, and Y. M. Moon, “Improved MIMO antenna by mutual coupling suppression between elements,” in Proceedings of the 8th European Conference on Wireless Technology, pp. 125–128, October 2005.
  9. S. D. Cheng, R. Biswas, E. Ozbay, S. McCalmont, G. Tuttle, and K.-M. Ho, “Optimized dipole antennas on photonic band gap crystals,” Applied Physics Letters, vol. 67, no. 23, pp. 3399–3401, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Q. Fu, Q. R. Zheng, Q. Gao, and G. H. Zhang, “Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures,” Journal of Electromagnetic Waves and Applications, vol. 20, no. 6, pp. 819–825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Q.-R. Zheng, B.-Q. Lin, Y.-Q. Fu, and N.-C. Yuan, “Characteristics and applications of a novel compact spiral electromagnetic band-gap (EBG) structure,” Journal of Electromagnetic Waves and Applications, vol. 21, no. 2, pp. 199–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Yanagi, T. Oshima, H. Oh-hashi et al., “Lumped-element loaded EBG structure with an enhanced bandgap and homogeneity,” in Proceedings of the IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials (IWAT '08), pp. 458–461, Chiba, Japan, March 2008. View at Publisher · View at Google Scholar
  13. S. M. Moghadasi, A. R. Attari, and M. M. Mirsalehi, “Design of three-layer circular mushroom-like EBG structures,” in Proceedings of the Electromagnetics Research Symposium, pp. 143–146, Hangzhou, China, 2008.
  14. B. Gao and M. F. Yuen, “Passive UHF RFID with ferrite Electromagnetic Band Gap (EBG) material n for metal objects tracking,” in Proceedings of 58th Electronic Components and Technology Conference(ECTC '08), pp. 1990–1994, Lake Buena Vista, Fla, USA, May 2008. View at Publisher · View at Google Scholar
  15. H. S. Farahani, M. Veysi, M. Kamyab, and A. Tadjalli, “Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 57–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexöpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2059–2074, 1999. View at Google Scholar · View at Scopus
  17. A. Sanada, C. Caloz, and T. Itoh, “Characteristics of the composite right/left-handed transmission lines,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 2, pp. 68–70, 2004. View at Publisher · View at Google Scholar · View at Scopus