International Journal of Antennas and Propagation
 Journal metrics
Acceptance rate35%
Submission to final decision74 days
Acceptance to publication30 days
CiteScore1.190
Impact Factor1.347
 Submit

Optimal Pattern Synthesis of Linear Array and Broadband Design of Whip Antenna Using Grasshopper Optimization Algorithm

Read the full article

 Journal profile

International Journal of Antennas and Propagation publishes research on the design, analysis, and applications of antennas, along with studies related to the propagation of electromagnetic waves through space, air, and other media.

 Editor spotlight

Chief Editor, Professor Koziel, engages in research focused on surrogate-based modeling and optimization including space mapping technology for engineering design at Reykjavik University.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

A Modified Wolf Pack Algorithm for Multiconstrained Sparse Linear Array Synthesis

The aim of the research is to propose a new optimization method for the multiconstrained optimization of sparse linear arrays (including the constraints of the number of elements, the aperture of arrays, and the minimum distance between adjacent elements). The new method is a modified wolf pack optimization algorithm based on the quantum theory. In the new method, wolves are coded by Bloch spherical coordinates of quantum bits, updated by quantum revolving gates, and selectively adaptively mutated when performing poorly. Because of the three-coordinate characteristics of the sphere, the number of global optimum solutions is greatly expanded and ultimately can be searched with a higher probability. Selective mutation enhances the robustness of the algorithm and improves the search speed. Furthermore, because the size of each dimension of Bloch spherical coordinates is always [−1, 1], the variables transformed by solution space must satisfy the constraints of the aperture of arrays and the minimum distance between adjacent elements, which effectively avoids infallible solutions in the process of updating and mutating the position of the wolf group, reduces the judgment steps, and improves the efficiency of optimization. The validity and robustness of the proposed method are verified by the simulation of two typical examples, and the optimization efficiency of the proposed method is higher than the existing methods.

Research Article

Reduction of FDTD Stair-Casing Error regarding to Metamaterials by Using High-Order Polynomial Transformation Functions

The material parameters of a metamaterial (MTM) are determined by the transformation function used in the optical transformation. Some previously reported MTMs, such as the invisibility cloak, the field rotator, and the field concentrator, were designed by a linear transformation. Their impedance was matched to the background so that no reflection was found; however, the material parameters were mismatched to the background due to the linear transformation function. In the present work, the parameters were matched by using high-order polynomial functions as the transformation function. Since similar materials are filled in boundary cells of the finite-difference time-domain (FDTD) algorithm, the stair-casing error was reduced and the tolerance against boundary abrasion was increased. The frequency response of the proposed method was analyzed. The proposed method is applicable to MTM structures that have complex boundary shapes. In this work, circular and elliptic boundary shapes were considered as examples.

Research Article

Characteristic Features of Electric Fields Radiated by Cloud Flashes in Himalayan Region

Electric fields radiated by cloud flashes that occurred over the rugged terrain of mountainous country Nepal were recorded, analysed, and compared with those from different geographical regions. The total duration of the flash varies from 80 to 469.5 ms. The majority of the cloud flashes were of two stages: the first stage of the majority of the flashes was found to consist of large microsecond scale bipolar pulses having negative initial polarity and the late stage consists of submicrosecond scale pulses having both positive and negative initial polarities. The average durations of the first and second stages are 11.23 and 66.79 ms, respectively, and the time gap between them is 53.57 ms. The cloud pulses led by the negative initial polarity pulses are more compactly distributed and are higher in mountainous countries as compared to those of flashes lead by positive initial polarity pulses, with the average values of interpulse interval being 211.42 and 309.79 μs, respectively.

Research Article

A Novel Dual-Band Binary Branch Fractal Bionic Antenna for Mobile Terminals

A novel two-iteration binary tree fractal bionic structure antenna is proposed for the third generation (3G), fourth generation (4G), WLAN, and Bluetooth wireless applications in the paper, which is based on the principles of conventional microstrip monopole antenna and resonant coupling technique, combined with the advantages of fractal geometry. A new fractal structure was presented for antenna radiator, similar to the tree in nature. The proposed antenna adapted two iterations on a fractal structure radiator, which covers mobile applications in two broad frequency bands with a bandwidth of 44.2% (1.85–2.9 GHz) for TD-SCDMA, WCDMA, CDMA2000, LTE33-41, and Bluetooth frequency bands, and 11.5% (4.9–5.5 GHz) for WLAN frequency band. The proposed antenna was fabricated on a G10/FR4 substrate with a dielectric constant of 4.4 and a size of 50 × 40 mm2. The good agreement between the measurement results and the simulation results validate that the proposed design approach meet the requirements for various wireless applications.

Research Article

Design of Low-Profile Frequency-Selective Rasorbers Based on Three-Legged Loaded Element

A novel low-profile dual-polarization frequency-selective rasorber (FSR) with a transmissive window in the absorption band is proposed in this paper. Based on the equivalent circuit model (ECM), the principles of the impedance design are theoretically derived. Then, a two-layer structure model is constructed. The top layer is composed of a lossy three-legged loaded element (TLLE), and the bottom layer is composed of a square ring bandpass frequency-selective surface (FSS). Furthermore, the strips are folded to reduce the unit cell size to stabilize the angular response. The maximum stable response angle increases from 20 to 40° due to the miniaturized design under both TE and TM polarization. The experimental results of the prototype are in good agreement with the simulation results, which validates the rationality of our design.

Research Article

Robust Synthesis Algorithm for Directional Modulation Signal with Array Manifold Vectors Uncertainty

Directional modulation (DM) has become a new research hotspot of physical layer security (PLS) communication at the transmitter side. In this paper, we propose a robust synthesis algorithm for DM signal under the condition of the array manifold vectors perturbation. This algorithm optimizes the constraints of sidelobe level and Euclidean distance of constellation points by considering the worst case performance of array manifold vectors. Furthermore, we also design an active constellation extension (ACE) method to relax the equality constraint of desired modulation symbols into a robust inequality constraint at the desired direction. These constraints can be reformulated in a convex form with and regularization, which are computationally tractable. Simulation results show better performance of the proposed robust algorithm compared with the benchmark synthesis algorithms in the presence of array manifold vectors uncertainty.

International Journal of Antennas and Propagation
 Journal metrics
Acceptance rate35%
Submission to final decision74 days
Acceptance to publication30 days
CiteScore1.190
Impact Factor1.347
 Submit