Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2011, Article ID 540275, 12 pages
http://dx.doi.org/10.1155/2011/540275
Research Article

Spatial Correlation for DoA Characterization Using Von Mises, Cosine, and Gaussian Distributions

1Departamento de Engenharia Elétrica, Universidade Federal de Campina Grande, 58.429-900 Campina Grande, PB, Brazil
2Escola Politécnica de Pernambuco, Universidade de Pernambuco, 50.750-470 Recife, PE, Brazil

Received 2 May 2011; Accepted 2 July 2011

Academic Editor: Hoi Shun Lui

Copyright © 2011 Wamberto J. L. Queiroz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. C. Godara, “Application of antenna arrays to mobile communications, part II: beam-forming and direction-of-arrival considerations,” Proceedings of the IEEE, vol. 85, no. 8, pp. 1195–1245, 1997. View at Google Scholar · View at Scopus
  2. R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. AP-34, no. 3, pp. 276–280, 1986. View at Google Scholar · View at Scopus
  3. I. Ziskind and M. Wax, “Maximum likelihood localization of multiple sources by alternating projection,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 10, pp. 1553–1560, 1988. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984–995, 1989. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Stoica and A. B. Gershman, “Maximum-likelihood DOA estimation by data-supported grid search,” IEEE Signal Processing Letters, vol. 6, no. 10, pp. 273–275, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Donelli, F. Viani, P. Rocca, and A. Massa, “An innovative multiresolution approach for DOA estimation based on a support vector classification,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 8, pp. 2279–2292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Luo, J. R. Zeidler, and S. McLaughlin, “Performance analysis of compact antenna arrays with MRC in correlated Nakagami fading channels,” IEEE Transactions on Vehicular Technology, vol. 50, no. 1, pp. 267–277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Lopes Alves and M. S. de Alencar, “A linear adaptive antenna array with random spacing and coupling effects,” Journal of Microwaves and Optoelectronics, vol. 7, no. 1, pp. 16–25, 2008. View at Google Scholar · View at Scopus
  9. R. H. Clarke, “A statistical theory of mobile-radio reception,” The Bell System Technical Journal, vol. 47, pp. 957–1000, 1968. View at Google Scholar
  10. J. S. Sadowsky and V. Kafedziski, “On the correlation and scattering functions of the WSSUS channel for mobile communication,” IEEE Transactions on Vehicular Technology, vol. 47, pp. 270–282, 1998. View at Google Scholar
  11. W. R. Braun and U. Dersch, “A physical mobile radio channel model,” IEEE Transactions on Vehicular Technology, vol. 40, no. 2, pp. 472–482, 1991. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Kuchar, E. Aparicio, J.-P. Rossi, and E. Bonek, “Azimuth, elevation, and delay of signals at mobile station site,” in Proceedings of the 8th Virginia Tech Symposium on Wireless Personal Communications, pp. 99–110, Blacksburg, Va, USA, 1998.
  13. W. C. Y. Lee, “Effect on correlation between two mobile radio base-station antennas,” IEEE Transactions on Communications, vol. 21, no. 11, pp. 1214–1224, 1973. View at Google Scholar · View at Scopus
  14. F. Adachi, M. T. Feeney, A. G. Williamson, and J. D. Parsons, “Crosscorrelation between the envelopes of 900 MHz signals received at a mobile radio base station site,” IEE Proceedings—Communications, Radio and Signal Processing, vol. 133, no. 6, pp. 506–512, 1986. View at Google Scholar
  15. P. Petrus, J. H. Reed, and T. S. Rappaport, “Effects of directional antennas at the base station on the doppler spectrum,” IEEE Communications Letters, vol. 1, no. 2, pp. 40–42, 1997. View at Google Scholar · View at Scopus
  16. J. C. Liberti and T. S. Rappaport, “A geometrically based model for line-of-sight multipath radio channels,” in Proceedings of the IEEE Vehicular Technology Conference (VTC '96), pp. 844–848, Atlanta, Ga, USA, 1996.
  17. A. Abdi and M. Kaveh, “A versatile spatio-temporal correlation function for mobile fading channels with non-isotropic scattering,” in Proceedings of the 10th IEEE Workshop on Statistical Signal and Array Processing, 2000.
  18. J. Fuhl, A. F. Molisch, and E. Bonek, “Unified channel model for mobile radio systems with smart antennas,” IEE Proceedings—Radar, Sonar Navigation, vol. 145, no. 1, pp. 32–41, 1998. View at Google Scholar · View at Scopus
  19. A. Abdi, J. A. Barger, and M. Kaveh, “A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station,” IEEE Transactions on Vehicular Technology, vol. 51, no. 3, pp. 425–434, 2002. View at Google Scholar
  20. A. A. Al-Kheir, K. A. Qaraqe, and M.-S. Alouini, “Space-time channel correlation of MIMO rayleigh fading based on non-isotropic 3D scattering,” in Proceedings of the International Conference on Signal Processing and Communications (ICSPC '07), pp. 648–651, Dubai, United Arab Emirates, November 2007.
  21. K. Mammasis, R. W. Stewart, and J. S. Thompson, “Spatial Fading Correlation model using mixtures of von Mises Fisher distributions,” IEEE Transactions on Wireless Communications, vol. 8, no. 4, Article ID 4907468, pp. 2046–2055, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Ren and R. G. Vaughan, “Spaced antenna design in directional scenarios using the von mises distribution,” in Proceedings of the 70th IEEE Vehicular Technology Conference (VTC '09), pp. 1–5, Anchorage, Alaska, USA, September 2009.
  23. R. V. Mises, “Über die ganzzahligkeit der atomgewicht and verwandte fragen,” Physikal Z, vol. 19, pp. 490–500, 1918. View at Google Scholar
  24. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover pubications, New York, NY, USA, 1970.
  25. J. W. Wallace and M. A. Jensen, “Mutual coupling in MIMO wireless systems: a rigorous network theory analysis,” IEEE Transactions on Wireless Communications, vol. 3, no. 4, pp. 1317–1325, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Wallace, T. Shawcroft, and M. Jensen, “Modeling antenna coupling and correlation in rapidly fading MIMO channels,” in Proceedings of the 1st European Conference on Antennas and Propagation (EuCAP '06), Nice, France, November 2006.
  27. H. A. Mehmet, K. Ozdemiz, and E. Arvas, “Mutual coupling effect in multi-antenna wireless,” in Proceedings of the IEEE Globecom, San Francisco, Calif, USA, December 2003.
  28. M. A. Jensen and J. W. Wallace, “Analysis of coupling in multi-antenna communication systems,” IEICE Transactions on Electronics, vol. E87-C, no. 9, pp. 1418–1424, 2004. View at Google Scholar · View at Scopus
  29. N. W. Bikhazi and M. A. Jensen, “Impact of coupling on multiple-antenna capacity in correlated fast-fading environments,” IEEE Transactions on Vehicular Technology, vol. 58, no. 3, pp. 1595–1597, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Wallace, H. Ozcelik, M. Herdin, E. Bonek, and M. Jensen, “Power and complex envelope correlation for modeling measured indoor MIMO channels: a beamforming evaluation,” in Proceedings of the 58th IEEE Vehicular Technology Conference (VTC-Fall '03), vol. 1, pp. 363–367, Orlando, Fla, USA, October 2003.
  31. H. T. Hui, “A new definition of mutual impedance for application in dipole receiving antenna arrays,” IEEE Antennas and Wireless Propagation Letters, vol. 3, no. 1, pp. 364–367, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. H. T. Hui, “A practical approach to compensate for the mutual coupling effect in an adaptive dipole array,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 5, pp. 1262–1269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. H.-S. Lui, H. T. Hui, and M. S. Leong, “A note on the mutual-coupling problems in transmitting and receiving antenna arrays,” IEEE Antennas and Propagation Magazine, vol. 51, no. 5, Article ID 5432083, pp. 171–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, 1997.
  35. J. Wallace and M. Jensen, “Impact of antenna coupling on diversity performance: complete network theory analysis,” in Proceedings of the IEEE International Conference on Communications (ICC '04), vol. 2, pp. 947–951, Paris, France, June 2004.