Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 151287, 7 pages
http://dx.doi.org/10.1155/2012/151287
Review Article

Useful Solutions for Plane Wave Diffraction by Dielectric Slabs and Wedges

D.I.E.I.I., University of Salerno, Via Ponte Don Melillo, Salerno, 84084 Fisciano, Italy

Received 8 March 2012; Accepted 5 April 2012

Academic Editor: Francesco Soldovieri

Copyright © 2012 Gianluca Gennarelli and Giovanni Riccio. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. B. Keller, “Geometrical theory of diffraction,” Journal of the Optical Society of America, vol. 52, pp. 116–130, 1962. View at Google Scholar · View at Scopus
  2. R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface,” Proceedings of the IEEE, vol. 62, no. 11, pp. 1448–1461, 1974. View at Google Scholar · View at Scopus
  3. P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency em characterization of through-wall building imaging,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 5, Article ID 4810144, pp. 1375–1387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. I. Kozlov, L. Lighart, and A. I. Logvin, “Radar reflection from surfaces with ruptures,” in Proceedings of 13th International Conference on Microwaves, Radar and Wireless Communications (MIKON '00), vol. 1, pp. 347–350, 2000.
  5. W. D. Burnside and K. W. Burgener, “High frequency scattering by a thin lossless dielectric slab,” IEEE Transactions on Antennas and Propagation, vol. 31, no. 1, pp. 104–110, 1983. View at Google Scholar · View at Scopus
  6. R. J. Leubbers, “Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss,” IEEE Transactions on Antennas and Propagation, vol. 32, no. 1, pp. 70–76, 1984. View at Google Scholar · View at Scopus
  7. P. Bernardi, R. Cicchetti, and O. Testa, “A three-dimensional UTD heuristic diffraction coefficient for complex penetrable wedges,” IEEE Transactions on Antennas and Propagation, vol. 50, no. 2, pp. 217–224, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. T. W. Veruttipong, “Time domain version of the uniform GTD,” IEEE Transactions on Antennas and Propagation, vol. 38, no. 11, pp. 1757–1764, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Ferrara, C. Gennarelli, G. Gennarelli, M. Migliozzi, and G. Riccio, “Scattering by truncated lossy layers: A UAPO-based approach,” Electromagnetics, vol. 27, no. 7, pp. 443–456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. C. A. Balanis, Advanced Engineering Electromagnetics, Wiley, New York, NY, USA, 1989.
  11. COMSOL Multiphysics, v. 3.5a, Users' guide, RF Module, 2008.
  12. G. Gennarelli and G. Riccio, “A uniform asymptotic solution for the diffraction by a right-angled dielectric wedge,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 3, Article ID 5677594, pp. 898–903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Gennarelli and G. Riccio, “A UAPO-based model for propagation prediction in microcellular environments,” Progress In Electromagnetics Research B, no. 17, pp. 101–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Gennarelli and G. Riccio, “Plane-wave diffraction by an obtuse-angled dielectric wedge,” Journal of the Optical Society of America A, vol. 28, no. 4, pp. 627–632, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House, London, UK, 2000.