Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012 (2012), Article ID 176383, 14 pages
http://dx.doi.org/10.1155/2012/176383
Research Article

Performance Analysis of IEEE 802.15.4 Compliant Wireless Devices for Heterogeneous Indoor Home Automation Environments

Electrical and Electronic Engineering Department, Public University of Navarre, Campus de Arrosadia, 31006 Pamplona, Spain

Received 27 June 2012; Accepted 18 September 2012

Academic Editor: Tat Yeo

Copyright © 2012 Juan Antonio Nazabal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Bose, “Sensor networks-motes, smart spaces, and beyond,” IEEE Pervasive Computing, vol. 8, no. 3, pp. 84–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Dargie and C. PoellaBauer, Fundamentals of Wireless Sensor Networks Theory and Practice, John Wiley & Sons, Chichester, UK, 2010.
  3. Y. Xiao and Y. Pan, Emerging Wireless LANs, Wireless PANs, And Wireless MANs, John Wiley & Sons, Hoboken, NJ, USA, 2009.
  4. S. A. Mitilineos, D. M. Kyriazanos, O. E. Segou, J. N. Goufas, and S. C. A. Thomopoulos, “Indoor localization with wireless sensor networks,” Progress in Electromagnetics Research, vol. 109, pp. 441–474, 2010. View at Google Scholar · View at Scopus
  5. J. H. Sharly, T. Y. Choi, J. H. Park, S. H. Kang, S. J. Yun, and J. G. Park, “On-line ranging for mobile objects using ZIGBEE RSSI measurement,” in Proceedings of the 3rd International Conference on Pervasive Computing and Applications (ICPCA '08), pp. 662–666, Alexandria, Egypt, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Ruiz-Garcia, P. Barreiro, J. I. Robla, and L. Lunadei, “Testing zigBee motes for monitoring refrigerated vegetable transportation under real conditions,” Sensors, vol. 10, no. 5, pp. 4968–4982, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. A. Gay-Fernández, M. G. Sánchez, I. Cuiñas, A. V. Alejos, J. G. Sánchez, and J. L. Miranda-Sierra, “Propagation analysis and deployment of a wireless sensor network in a forest,” Progress in Electromagnetics Research, vol. 106, pp. 121–145, 2010. View at Google Scholar · View at Scopus
  8. J. Trubilowicz, K. Cai, and M. Weiler, “Viability of motes for hydrological measurement,” Water Resources Research, vol. 46, no. 4, Article ID W00D22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Kim, R. G. Evans, and W. M. Iversen, “Remote sensing and control of an irrigation system using a distributed wireless sensor network,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 7, pp. 1379–1387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. B. D. Buckner, V. Markov, L. C. Lai, and J. C. Earthman, “Laser-scanning structural health monitoring with wireless sensor motes,” Optical Engineering, vol. 47, no. 5, Article ID 054402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Berisha, H. Kwon, and A. Spanias, “Real-time acoustic monitoring using wireless sensor motes,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '06), pp. 847–850, May 2006. View at Scopus
  12. C. U. Grosse, S. D. Glaser, and M. Krüger, “Initial development of wireless acoustic emission sensor Motes for civil infrastructure state monitoring,” Smart Structures and Systems, vol. 6, no. 3, pp. 197–209, 2010. View at Google Scholar · View at Scopus
  13. K. S. C. Kuang, S. T. Quek, and M. Maalej, “Remote flood monitoring system based on plastic optical fibres and wireless motes,” Sensors and Actuators A, vol. 147, no. 2, pp. 449–455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Z. Li, L. Wang, X. M. Wu, and Y. T. Zhang, “Experimental analysis on radio transmission and localization of a zigbee-based wireless healthcare monitoring platform,” in Proceedings of the 5th International Conference on Information Technology and Applications in Biomedicine (ITAB '08), pp. 488–490, Nanjing, China, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Dagtas, G. Pekhteryev, Z. Sahinoglu, H. Cam, and N. Challa, “Real-time and secure wireless health monitoring,” International Journal of Telemedicine and Applications, vol. 2008, Article ID 135808, 10 pages, 2008. View at Publisher · View at Google Scholar
  16. Y. Rahal, H. Pigot, and P. Mabilleau, “Location estimation in a smart home: system implementation and evaluation using experimental data,” International Journal of Telemedicine and Applications, vol. 2008, Article ID 142803, 9 pages, 2008. View at Publisher · View at Google Scholar
  17. K. Främling, I. Oliver, J. Honkola, and J. Nyman, “Smart spaces for ubiquitously smart buildings,” in Proceedings of the 3rd International Conference on Mobile Ubiquitous Computing, Systems, Services, and Technologies (UBICOMM '09), pp. 295–300, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K. McGlinn, R. Brennan, D. O’Sullivan, and D. Lewis, “The SimCon generator: an interactive context simulator for rapid evaluation of smart building applications using virtual reality,” in Proceedings of the 8th IEEE International Workshop on Managing Ubiquitous Communications and Services, 2011.
  19. B. Bach, D. Wilhelmer, and P. Palensky, “Smart buildings, smart cities and governing innovation in the new millennium,” in Proceedings of the 8th IEEE International Conference on Industrial Informatics (INDIN '10), pp. 8–14, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. Zamora-Izquierdo, J. Santa, and A. F. Gomez-Skarmeta, “An integral and networked home automation solution for indoor ambient intelligence,” IEEE Pervasive Computing, vol. 9, 2010. View at Google Scholar
  21. R. Yang and L. Wang, “Multi-objective optimization for decision-making of energy and comfort management in building automation and control,” Sustainable Cities and Society, vol. 2, no. 1, pp. 1–7, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Aiello and S. Dustdar, “Are our homes ready for services? A domotic infrastructure based on the Web service stack,” Pervasive and Mobile Computing, vol. 4, no. 4, pp. 506–525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. K. Haakenstad, “Open protocol standard for computerized building systems: BACnet,” in Proceedings of the IEEE International Conference on Control Applications (CCA '99), pp. 1585–1590, August 1999. View at Scopus
  24. T. Teich, D. Szendrei, M. Schrader, F. Jahn, and S. Franke, “Feasibility of integrating heating valve drivers with KNX-standard for performing dynamic hydraulic balance in domestic buildings,” Proceedings of World Academy of Science, Engineering and Technology, vol. 73, pp. 367–372, 2011. View at Google Scholar · View at Scopus
  25. C. Bujdei and S. A. Moraru, “Ensuring comfort in office buildings: designing a KNX monitoring and control system,” in Proceedings of the 7th International Conference on Intelligent Environments, 2011.
  26. T. J. Park and S. H. Hong, “Experimental case study of a BACnet-based lighting control system,” IEEE Transactions on Automation Science and Engineering, vol. 6, no. 2, pp. 322–333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Guo, W. M. Healy, and M. Zhou, “ZigBee-Wireless Mesh Networks for building automation and control,” in Proceedings of the International Conference on Networking, Sensing and Control (ICNSC '10), pp. 731–736, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Liu, T. Alpcan, and C. Bauckhage, “Adaptive wireless services for augmented environments,” in Proceedings of the 6th Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous '09), July 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Sun, G. Zhao, and H. Luo, “Smart building control based on wireless sensor-actuator networks,” Chinese Journal of Electronics, vol. 20, no. 3, pp. 437–442, 2011. View at Google Scholar · View at Scopus
  30. C. H. Lu and L. C. Fu, “Robust location-aware activity recognition using wireless sensor network in an attentive home,” IEEE Transactions on Automation Science and Engineering, vol. 6, no. 4, pp. 598–609, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. M. Han and J. H. Lim, “Smart home energy management system using IEEE 802.15.4 and ZigBee,” IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1403–1410, 2010. View at Google Scholar
  32. J. Byun and S. Park, “Development of a self-adapting intelligent system for building energy saving and context-aware smart services,” IEEE Transactions on Consumer Electronics, vol. 57, no. 1, pp. 90–98, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. H. C. Tung, K. F. Tsang, L. L. Lai, K. L. Lam, and H. Y. Tung, “Hybrid energy management solution for smart building,” in Proceedings of IEEE International Conference on Consumer Electronics (ICCE '11), pp. 509–510, January 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. C. A. M. Bolzani, C. Montagnoli, and M. L. Netto, “Domotics over IEEE 802.15.4—a spread spectrum home automation application,” in Proceedings of IEEE 9th International Symposium on Spread Spectrum Symposium on Spread Spectrum Techniques and Applications (ISSSTA '06), pp. 396–400, August 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Sulc, R. Kuchta, and R. Vrba, “IQRF smart house—a case study,” in Proceedings of the 3rd International Conference on Advances in Mesh Networks (MESH '10), pp. 103–108, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. P. Tae, J. C. You, K. P. Dong, and H. H. Seung, “BACnet over ZigBee, A new approach to wireless datalink channel for BACnet,” in Proceedings of the 5th IEEE International Conference on Industrial Informatics (INDIN '07), pp. 33–38, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. Nazabal, C. Fernandez-Valdivielso, F. Falcone, I. R. Matias, and S. C. Mukhopadhyay, “Integration of hybrid sensing networks in indoor intelligent homes,” in Proceedings of the 5th International Conference on Sensing Technology (ICST '11), 2011.
  38. F. Österlind, E. Pramsten, D. Roberthson, J. Eriksson, N. Finne, and T. Voigt, “Integrating building automation systems and wireless sensor networks,” in Proceedings of the 12th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA '07), pp. 1376–1379, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Yi, A. Iwayemi, and C. Zhou, “Building automation networks for smart grids,” International Journal of Digital Multimedia Broadcasting, vol. 2011, Article ID 926363, 12 pages, 2011. View at Publisher · View at Google Scholar
  40. S. Farahani, ZigBee Wireless Networks and Transceivers, Elsevier, 2008.
  41. D. Gislason, Zigbee Wireless Networking, Newnes, 2008.
  42. Y. Li, J. Maorong, G. Zhenru, Z. Weiping, and G. Tao, “Design of home automation system based on ZigBee wireless sensor network,” in Proceedings of the 1st International Conference on Information Science and Engineering (ICISE '09), pp. 2610–2613, Nanjing, China, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Arai, H. Kawamura, and K. Suzuki, “Estimation of ZigBee's RSSI fluctuated by crowd behavior in indoor space,” in Proceedings of SICE Annual Conference (SICE '10), pp. 696–701, Taiwan, August 2010. View at Scopus
  44. R. M. Pellegrini, S. Persia, D. Volponi, and G. Marcone, “RF propagation analysis for ZigBee Sensor Network using RSSI measurements,” in Proceedings of the 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology, Wireless (VITAE '11), March 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Consolini, P. Medagliani, and G. Ferrari, “Adjacency matrix-based transmit power allocation strategies in wireless sensor networks,” Sensors, vol. 9, no. 7, pp. 5390–5422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. S. Lee, “Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks,” IEEE Transactions on Consumer Electronics, vol. 52, no. 3, pp. 742–749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Hashemi, “Indoor radio propagation channel,” Proceedings of the IEEE, vol. 81, no. 7, pp. 943–968, 1993. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Fink, N. Michael, A. Kushleyev, and V. Kumar, “Experimental characterization of radio signal propagation in indoor environments with application to estimation and control,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '09), pp. 2834–2839, St. Louis, Mo, USA, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. M. Hernando, Transmisión por Radio, Universitaria Ramón Areces, Madrid, Spain, 5th edition, 2008.
  50. Y. Wang, W.-J. Lu, and H.-B. Zhu, “An empirical path-loss model for wireless channels in indoor short-range office environment,” International Journal of Antennas and Propagation, vol. 2012, Article ID 636349, 7 pages, 2012. View at Publisher · View at Google Scholar
  51. A. Gaugue, C. Lièbe, P. Combeau et al., “Ultra-wideband indoor channel modelling using ray-tracing software for through-the-wall imaging radar,” International Journal of Antennas and Propagation, vol. 2010, Article ID 934602, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. A. E. Tümer and M. Gündüz, “Energy-efficient and fast data gathering protocols for indoor wireless sensor networks,” Sensors, vol. 10, no. 9, pp. 8054–8069, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. M. F. Iskander and Z. Yun, “Propagation prediction models for wireless communication systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 662–673, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. A. W. Reza, M. S. Sarker, and K. Dimyati, “A novel integrated mathematical approach of ray-tracing and genetic algorithm for optimizing indoor wireless coverage,” Progress in Electromagnetics Research, vol. 110, pp. 147–162, 2010. View at Google Scholar · View at Scopus
  55. H. D. Hristov, Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas, s.l, Artech House, 2000.
  56. Recomendattion UIT-R P. 526-11, s.l., “Propagación por difracción. Serie P. Propagación de las ondas radioeléctricas, 10/2009”.
  57. R. J. Luebbers, “Heuristic UTD slope diffraction coefficient for rough lossy wedges,” IEEE Transactions on Antennas and Propagation, vol. 37, no. 2, pp. 206–211, 1989. View at Publisher · View at Google Scholar · View at Scopus
  58. R. J. Luebbers, “Comparison of lossy wedge diffraction coefficients with application to mixed path propagation loss prediction,” IEEE Transactions on Antennas and Propagation, vol. 36, no. 7, pp. 1031–1034, 1988. View at Publisher · View at Google Scholar · View at Scopus