Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 183145, 11 pages
http://dx.doi.org/10.1155/2012/183145
Research Article

Propagation Mechanism Modeling in the Near-Region of Arbitrary Cross-Sectional Tunnels

1State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
2Escuela Universitaria de Ingeniería Técnica de Telecomunicación, Universidad Politècnica de Madrid, 28031 Madrid, Spain

Received 24 April 2012; Accepted 24 September 2012

Academic Editor: Thomas Kürner

Copyright © 2012 Ke Guan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Briso-Rodríguez, J. M. Cruz, and J. I. Alonso, “Measurements and modeling of distributed antenna systems in railway tunnels,” IEEE Transactions on Vehicular Technology, vol. 56, no. 5, pp. 2870–2879, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. P. Zhang and Y. Hwang, “Enhancement of rectangular tunnel waveguide model,” in Proceedings of the Asia-Pacific Microwave Conference (APMC '97), pp. 197–200, December 1997. View at Scopus
  3. Y. P. Zhang and Y. Hwang, “Characterization of UHF radio propagation channels in tunnel environments for microcellular and personal communications,” IEEE Transactions on Vehicular Technology, vol. 47, no. 1, pp. 283–296, 1998. View at Google Scholar · View at Scopus
  4. J. Alonso, B. Izquierdo, and J. Romeu, “Break point analysis and modelling in subway tunnels,” in Proceedings of the 3rd European Conference on Antennas and Propagation (EuCAP '09), pp. 3254–3258, March 2009. View at Scopus
  5. K. Guan, Z. Zhong, B. Ai, and C. Briso-Rodríguez, “Research of propagation characteristics of break point; Near zone and far zone under operational subway condition,” in Proceedings of the 6th International Wireless Communications and Mobile Computing Conference (IWCMC '10), pp. 114–118, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. P. Zhang, “Novel model for propagation loss prediction in tunnels,” IEEE Transactions on Vehicular Technology, vol. 52, no. 5, pp. 1308–1314, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Molina-Garcia-Pardo, M. Lienard, A. Nasr, and P. Degauque, “On the possibility of interpreting field variations and polarization in arched tunnels using a model for propagation in rectangular or circular tunnels,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 4, pp. 1206–1211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. ETSI ETR 300-3 ed.1 (2000-02), “Terrestrial Trunked Radio (TETRA), Voice plus Data (V+D), Designers’ guide, Part 3: Direct Mode Operation (DMO),” 2000.
  9. http://www.uic.asso.fr.
  10. “IEEE standard for Communications-Based Train Control (CBTC) performance and functional requirements,” 1999.
  11. Notice of Proposed Rulemaking and Order FCC 03-324, Federal Communications Commission, 2003.
  12. A. Hrovat, G. Kandus, and T. Javornik, “Four-slope channel model for path loss prediction in tunnels at 400 MHz,” IET Microwaves, Antennas and Propagation, vol. 4, no. 5, pp. 571–582, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. P. Zhang, G. X. Zheng, and J. H. Sheng, “Radio propagation at 900 MHz in underground coal mines,” IEEE Transactions on Antennas and Propagation, vol. 49, no. 5, pp. 757–762, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Klemenschits and E. Bonek, “Radio coverage of road tunnels at 900 and 1800 MHz by discrete antennas,” in Proceedings of the 5th IEEE International Symposium on PIMRC, vol. 2, pp. 411–415, 1994.
  15. J. M. Molina-Garcia-Pardo, M. Lienard, A. Nasr, and P. Degauque, “On the possibility of interpreting field variations and polarization in arched tunnels using a model for propagation in rectangular or circular tunnels,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 4, pp. 1206–1211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Lienard and P. Degauque, “Natural wave propagation in mine environments,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 9, pp. 1326–1339, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Mariage, M. Lienard, and P. Degauque, “Theoretical and experimental approach of the propagation of high frequency waves in road tunnels,” IEEE Transactions on Antennas and Propagation, vol. 42, no. 1, pp. 75–81, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Saunders, Antennas and Propagation for Wireless Communication Systems, John Wiley and Sons, Chichester, England, 2005.
  19. Z. changsen and M. Yan, “Effects of cross section of mine tunnel on the propagation characteristics of UHF radio wave Antennas,” in Proceedings of the 7th International Symposium on Propag. and EM Theory (ISAPE ’06), pp. 1–5, 2006.
  20. C. S. Zhang and L. F. Guo, “Research on propagation characteristics of electromagnetic wave in tunnels with arbitrary cross sections,” in Proceedings of the 2nd International Conference on Future Computer and Communication (ICFCC '10), pp. V22–V25, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. G. Dudley, M. Liénard, S. F. Mahmoud, and P. Degauque, “Wireless propagation in tunnels,” IEEE Antennas and Propagation Magazine, vol. 49, no. 2, pp. 11–26, 2007. View at Publisher · View at Google Scholar · View at Scopus