Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 184682, 6 pages
http://dx.doi.org/10.1155/2012/184682
Research Article

Geometry-Based Stochastic Modeling for MIMO Channel in High-Speed Mobile Scenario

State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

Received 21 July 2012; Accepted 29 September 2012

Academic Editor: Ai Bo

Copyright © 2012 Binghao Chen and Zhangdui Zhong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Wei, Z. Zhong, K. Guan, and B. Ai, “Path loss models in viaduct and plain scenarios of the high-speed railway,” in Proceedings of the 5th International ICST Conference on Communications and Networking in China (ChinaCom '10), pp. 1–5, August 2010. View at Scopus
  2. L. Gao, Z. Zhong, B. Ai, and L. Xiong, “Estimation of the Ricean K factor in the high speed railway scenarios,” in Proceedings of the 5th International ICST Conference on Communications and Networking in China (ChinaCom '10), pp. 1–5, August 2010. View at Scopus
  3. J. Lu, G. Zhu, and C. Briso-Rodriguez, “Fading characteristics in the railway terrain cuttings,” in Proceedings of the 73rd IEEE Vehicular Technology Conference (VTC Spring '11), pp. 1–5, 2011.
  4. S. Knörzer, M. A. Baldauf, T. Fügen, and W. Wiesbeck, “Channel modelling for an OFDM train communications system including different antenna types,” in Proceedings of the IEEE 64th Vehicular Technology Conference (VTC '06 Fall), pp. 213–217, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Almers, E. Bonek, A. Burr et al., “Survey of channel and radio propagation models for wireless MIMO systems,” Eurasip Journal on Wireless Communications and Networking, vol. 2007, Article ID 19070, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. X. Wang, X. Cheng, and D. Laurenson, “Vehicle-to-vehicle channel modeling and measurements: recent advances and future challenges,” IEEE Communications Magazine, vol. 47, no. 11, pp. 96–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Cheng, C. X. Wang, D. I. Laurenson, S. Salous, and A. V. Vasilakos, “An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels,” IEEE Transactions on Wireless Communications, vol. 8, no. 9, pp. 4824–4835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Cheng, C. X. Wang, Y. Yuan, D. I. Laurenson, and X. Ge, “A novel 3D regular-shaped geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels,” in Proceedings of the IEEE 72nd Vehicular Technology Conference Fall (VTC '10-Fall), Ottawa, Canada, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. G. Zajić, G. L. Stüber, T. G. Pratt, and S. T. Nguyen, “Wideband MIMO mobile-to-mobile channels: geometry-based statistical modeling with experimental verification,” IEEE Transactions on Vehicular Technology, vol. 58, no. 2, pp. 517–534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Karedal, F. Tufvesson, N. Czink et al., “A geometry-based stochastic MIMO model for vehicle-to-vehicle communications,” IEEE Transactions on Wireless Communications, vol. 8, no. 7, pp. 3646–3657, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Cheng, C. X. Wang, H. Wang et al., “Cooperative MIMO channel modeling and multi-link spatial correlation properties,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 2, pp. 388–396, 2012. View at Publisher · View at Google Scholar
  12. P. Kyosti, J. Meinila, L. Hentila et al., “WINNER II channel models, IST,” Tech. Rep. IST-4-027756 WINNER II D1.1.2 v1.2, 2007. View at Google Scholar
  13. J. Gong, J. F. Hayes, and M. R. Soleymani, “The effect of antenna physics on fading correlation and the capacity of multielement antenna systems,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4 I, pp. 1591–1599, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Abdi and M. Kaveh, “A space-time correlation model for multielement antenna systems in mobile fading channels,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 3, pp. 550–560, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. A. Al-Kheir, K. A. Qaraqe, and M. S. Alouini, “On the space-time correlation of MIMO fading channels in 3D scattering models,” in Proceedings of the 13th IEEE Symposium on Computers and Communications (ISCC '08), pp. 831–837, July 2008. View at Publisher · View at Google Scholar · View at Scopus