Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012 (2012), Article ID 246472, 9 pages
http://dx.doi.org/10.1155/2012/246472
Research Article

An Effective Method for Borehole Imaging of Buried Tunnels

1Department of Informatics, Mathematics, Electronics, and Transportation (DIMET), University Mediterranea of Reggio Calabria, Via Graziella, Localita Feo di Vito, 89124 Reggio Calabria, Italy
2Institute for Electromagnetic Sensing of The Environment—National Research Council (IREA-CNR), Via Diocleziano 328, 80124 Naples, Italy

Received 20 March 2012; Accepted 18 May 2012

Academic Editor: Francesco Soldovieri

Copyright © 2012 Loreto Di Donato et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Detection and imaging of buried tunnels is a challenging problem which is relevant to both geophysical surveys and security monitoring. To comply with the need of exploring large portions of the underground, electromagnetic measurements carried out under a borehole configuration are usually exploited. Since this requires to drill holes in the soil wherein the transmitting and receiving antennas have to be positioned, low complexity of the involved apparatus is important. On the other hand, to effectively image the surveyed area, there is the need for adopting efficient and reliable imaging methods. To address these issues, in this paper we investigate the feasibility of the linear sampling method (LSM), as this inverse scattering method is capable to provide almost real-time results even when 3D images of very large domains are built, while not requiring approximations of the underlying physics. In particular, the results of the reported numerical analysis show that the LSM is capable of performing the required imaging task while using a quite simple measurement configuration consisting of two boreholes and a few number of multiview-multistatic acquisitions.