Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012 (2012), Article ID 353821, 7 pages
http://dx.doi.org/10.1155/2012/353821
Research Article

Novel Flexible Artificial Magnetic Conductor

Area de Teoría de la Señal y Comunicaciones, Departamento de Ingeniería Eléctrica, Universidad de Oviedo, Edificio Polivalente, Modulo 8, Campus Universitario de Gijón, Asturias, 33203 Gijón, Spain

Received 15 February 2012; Revised 29 April 2012; Accepted 30 April 2012

Academic Editor: Carles Fernández-Prades

Copyright © 2012 M. E. de Cos and F. Las-Heras. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexöpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2059–2074, 1999. View at Google Scholar · View at Scopus
  2. F. R. Yang, K. P. Ma, M. Yongxi Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 8, pp. 1509–1514, 1999. View at Google Scholar · View at Scopus
  3. F. Yang and Y. Rahmat-Samii, Electromagnetic Band-Gap Structures in Antenna Engineering, The Cambridge RF and Microwave Engineering Series, Cambridge University, 2008.
  4. J. McVay, N. Engheta, and A. Hoorfar, “High impedance metamaterials surfaces using Hilbert-curve inclusions,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 3, pp. 130–132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Kim, F. Yang, and A. Z. Elsherbeni, “Compact artificial magnetic conductor designs using planar square spiral geometries,” Progress in Electromagnetics Research, vol. 77, pp. 43–54, 2007. View at Google Scholar · View at Scopus
  6. M. E. De Cos, F. L. Heras, and M. Franco, “Design of planar artificial magnetic conductor ground plane using frequency-selective surfaces for frequencies below 1 GHz,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 951–954, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. E. De Cos, Y. Álvarez, and F. Las-Heras, “Planar artificial magnetic conductor: design and characterization setup in the RFID SHF band,” Journal of Electromagnetic Waves and Applications, vol. 23, no. 11-12, pp. 1467–1478, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 1 I, pp. 8–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. E. De Cos, Y. Álvarez, R. C. Hadarig, and F. Las-Heras, “Novel SHF-band uniplanar artificial magnetic conductor,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 44–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Monorchio, G. Manara, and L. Lanuzza, “Synthesis of artificial magnetic conductors by using multilayered frequency selective surfaces,” IEEE Antennas and Wireless Propagation Letters, vol. 1, pp. 196–199, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Yang and Y. Rahmat-Samii, “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10 I, pp. 2691–2703, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. McVay, A. Hoorfar, and N. Engheta, “Small dipole antenna near peano high-impedance surfaces,” in Proceedings of the IEEE Antennas and Propagation Society Symposium, vol. 1, pp. 305–308, June 2004. View at Scopus
  13. H. Mosallaei and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 9, pp. 2403–2414, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Akhoondzadeh-Asl, D. J. Kern, P. S. Hall, and D. H. Werner, “Wideband dipoles on electromagnetic bandgap ground planes,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 9, pp. 2426–2434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Liang and H. Y. D. Yang, “Radiation characteristics of a microstrip patch over an electromagnetic bandgap surface,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 6, pp. 1691–1697, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 1 I, pp. 209–215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. R. Sohn, K. Y. Kim, H. S. Tae, and J. H. Lee, “Comparative study on various artificial magnetic conductors for low-profile antenna,” Progress in Electromagnetics Research, vol. 61, pp. 27–37, 2006. View at Google Scholar · View at Scopus
  18. E. Rajo-Iglesias, L. Inclán-Sánchez, and Q. Quevedo-Teruel, “Back radiation reduction in patch antennas using planar soft surfaces,” Progress In Electromagnetics Research Letters, vol. 6, pp. 123–130, 2009. View at Google Scholar · View at Scopus
  19. S. Zhu and R. Langley, “Dual-band wearable textile antenna on an EBG substrate,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 4, pp. 926–935, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Mantash, A-C. Tarot, S. Collardey, and K. Mabjoubi, “Dual-band antenna for W-LAN applications with EBG,” in Proceedings of the 5th International Congress on Advanced Electromagnetic Materials in Microwave and Optics (Metamaterials ’11), pp. 456–458, Barcelona, Spain, October 2011.
  21. M. Mantash, A. C. Tarot, S. Collardey, and K. Mahdjoubi, “Dual-band CPW-fed G-antenna using an EBG structure,” in Proceedings of the 6th Loughborough Antennas and Propagation Conference (LAPC '10), pp. 453–456, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Salonen and Y. Rahmat-Samii, “Textile antennas: effects of antenna bending on input matching and impedance bandwidth,” IEEE Aerospace and Electronic Systems Magazine, vol. 22, no. 3, pp. 10–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Salonen, F. Yang, Y. Rahmat-Samii, and M. Kivikoski, “WEBGA—Wearable electromagnetic band-gap antenna,” in Proceedings of the IEEE Antennas and Propagation Society Symposium, vol. 1, pp. 451–454, Monterrey, Calif, USA, June 2004. View at Scopus
  24. R. C. Hadarig, M. E. De Cos Gomez, Y. Álvarez, and F. Las-Heras, “Novel bow-tie—AMC combination for 5.8-GHz RFID tags usable with metallic objects,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 1217–1220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. E. de Cos, Y. Álvarez, and F. Las-Heras, “A novel approach for RCS reduction using a combination of artificial magnetic conductors,” Progress in Electromagnetics Research, vol. 107, pp. 147–159, 2010. View at Google Scholar · View at Scopus
  26. C. R. Simovski, P. De Maagt, S. A. Tretyakov, M. Paquay, and A. A. Sochava, “Angular stabilisation of resonant frequency of artificial magnetic conductors for TE-incidence,” Electronics Letters, vol. 40, no. 2, pp. 92–93, 2004. View at Publisher · View at Google Scholar · View at Scopus