Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 405145, 11 pages
http://dx.doi.org/10.1155/2012/405145
Research Article

Performance Analysis of Compressive-Sensing-Based Through-the-Wall Imaging with Effect of Unknown Parameters

Department of Electrical and Electronics Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, 06560 Ankara, Turkey

Received 4 March 2012; Accepted 1 May 2012

Academic Editor: Francesco Soldovieri

Copyright © 2012 Muhammed Duman and Ali Cafer Gurbuz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. G. Amin, Through-The-Wall Radar Imaging, CRC Press, Boca Raton, Fla, USA, 2010.
  2. Y. S. Yoon and M. G. Amin, “Imaging of behind the wall targets using wideband beamforming with compressive sensing,” in Proceedings of the IEEE/SP 15th Workshop on Statistical Signal Processing (SSP '09), pp. 93–96, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. S. Yoon and M. G. Amin, “Through-the-wall radar imaging using compressive sensing along temporal frequency domain,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '10), pp. 2806–2809, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 3, pp. 1408–1415, 2010. View at Publisher · View at Google Scholar
  5. A. C. Gurbuz, J. H. McClellan, and W. R. Scott Jr., “A compressive sensing data acquisition and imaging method for stepped frequency GPRs,” IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2640–2650, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. C. Gurbuz, J. H. McClellan, and W. R. Scott Jr., “Compressive sensing for GPR imaging,” in Proceedings of the 41st Asilomar Conference on Signals, Systems and Computers (ACSSC '07), pp. 2223–2227, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. C. Gurbuz, J. H. McClellan, and W. R. Scott Jr., “Compressive sensing for subsurface imaging using ground penetrating radar,” Signal Processing, vol. 89, no. 10, pp. 1959–1972, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Soldovieri, R. Solimene, L. Lo Monte, M. Bavusi, and A. Loperte, “Sparse reconstruction from GPR data with applications to rebar detection,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 3, pp. 1070–1079, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Baraniuk and P. Steeghs, “Compressive radar imaging,” in Proceedings of the IEEE Radar Conference, pp. 128–133, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Herman and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE Transactions on Signal Processing, vol. 57, no. 6, pp. 2275–2284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. J. Baranoski, “Through-wall imaging: historical perspective and future directions,” Journal of the Franklin Institute, vol. 345, no. 6, pp. 556–569, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Ahmad, Y. Zhang, and M. G. Amin, “Three-dimensional wideband beamforming for imaging through a single wall,” IEEE Geoscience and Remote Sensing Letters, vol. 5, no. 2, pp. 176–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,” IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 4, pp. 513–517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. E. M. Johansson and J. E. Mast, “Three-dimensional ground-penetrating radar imaging using synthetic aperture time-domain focusing,” in Advanced Microwave and Millimeter-Wave Detectors Conference, vol. 2275 of Proceedings of SPIE, pp. 205–214, July 1994. View at Scopus
  17. E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Communications on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse overcomplete representations in the presence of noise,” IEEE Transactions on Information Theory, vol. 52, no. 1, pp. 6–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Ward, “Cross validation in compressed sensing via the Johnson Lindenstrauss Lemma,” 2008.
  20. P. Boufounos, M. F. Duarte, and R. G. Baraniuk, “Sparse signal reconstruction from noisy compressive measurements using cross validation,” in Proceedings of the IEEE/SP 14th WorkShoP on Statistical Signal Processing (SSP '07), pp. 299–303, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex programming (web page and software),” http://www.cvxr.com/cvx/.
  22. S. O. Piper, “Homodyne FMCW radar range resolution effects with sinusoidal nonlinearities in the frequency sweep,” in Proceedings of the IEEE International Radar Conference, pp. 563–567, May 1995. View at Scopus
  23. D. L. Donoho, “Superresolution via sparsity constraints,” SIAM Journal on Mathematical Analysis, vol. 23, no. 5, pp. 1309–1331, 1992. View at Google Scholar
  24. D. Malioutov, M. Çetin, and A. S. Willsky, “A sparse signal reconstruction perspective for source localization with sensor arrays,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3010–3022, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. H. G. Ender, “On compressive sensing applied to radar,” Signal Processing, vol. 90, no. 5, pp. 1402–1414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Cevher, M. Duarte, and R. Baraniuk, “Distributed target localization via spatial sparsity,” in Proceedings of the European Signal Processing Conference (EUSIPCO '08), pp. 134–142, August 2008.
  27. A. C. Gurbuz, V. Cevher, and J. H. McClellan, “A compressive beamformer,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '08), Las vegas, Nev, USA, April 2008.
  28. Y. Yu, A. P. Petropulu, and H. V. Poor, “MIMO radar using compressive sampling,” IEEE Journal on Selected Topics in Signal Processing, vol. 4, no. 1, pp. 146–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Aggarwal and W. C. Karl, “Line detection in images through regularized hough transform,” IEEE Transactions on Image Processing, vol. 15, no. 3, pp. 582–591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random matrices,” Constructive Approximation, vol. 28, no. 3, pp. 253–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. M. A. Herman and T. Strohmer, “General deviants: an analysis of perturbations in compressed sensing,” IEEE Journal on Selected Topics in Signal Processing, vol. 4, no. 2, pp. 342–349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Scharf, Y. Chi, A. Pezeshki, and R. Calderbank, “Sensitivity to basis mismatch in compressed sensing,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '10), pp. 3930–3933, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Teke, A. C. Gurbuz, and O. Arikan, “A new omp techniques for sparse recovery,” in Proceedings of the 20. IEEE Sinyal isleme ve iletisim Uygulamalari (SIU) Kurultayi, Fethiye, Turkey, 2012.
  34. G. Mandapati, F. Ahmad, and M. G. Amin, “Autofocusing of through-the-wall radar imagery under unknown wall characteristics,” IEEE Transactions on Image Processing, vol. 16, no. 7, pp. 1785–1795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Zhang, G. Wang, and M. G. Amin, “New approach for target locations in the presence of wall ambiguities,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 1, pp. 301–315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. M. A. C. Tuncer and A. C. Gurbuz, “Analysis of unknown velocity and target off the grid problems in compressive sensing based subsurface imaging,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '11), pp. 2880–2883, Prague, Czech Republic, 2011.