Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 435890, 5 pages
http://dx.doi.org/10.1155/2012/435890
Research Article

High-Performance Computational Electromagnetic Methods Applied to the Design of Patch Antenna with EBG Structure

Area de Teoría de la Señal y Comunicaciones, Departamento de Ingeniería Eléctrica, Universidad de Oviedo, Edificio Polivalente, Modulo 8, Campus Universitario de Gijón, 33203 Gijón, Spain

Received 14 June 2011; Revised 19 September 2011; Accepted 20 September 2011

Academic Editor: Shyh-Kang Jeng

Copyright © 2012 R. C. Hadarig et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Garg, I. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Boston, Mass, USA, 2001.
  2. A. Pirhadi, F. Keshmiri, M. Hakkak, and M. Tayarani, “Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS AS superstrate layer,” Progress in Electromagnetics Research, vol. 70, pp. 1–20, 2007. View at Google Scholar · View at Scopus
  3. E. Rajo-Iglesias, L. Inclán-Sánchez, and O. Quevedo-Teruel, “Back radiation reduction in patch antennas using planar soft surfaces,” Progress in Electromagnetics Research Letters, vol. 6, pp. 123–130, 2009. View at Google Scholar
  4. Z. Duan, S. Qu, and Y. Hou, “Electrically small antenna inspired by spired split ring resonator,” Progress in Electromagnetics Research Letters, vol. 7, pp. 47–57, 2009. View at Google Scholar
  5. F. Yang and Y. Rahmat-Samii, Electromagnetic Band-Gap Structures in Antenna Engineering, The Cambridge RF and Microwave Engineering Series, Cambridge, University Press, 2008.
  6. M. E. de Cos, F. Las-Heras, and M. Franco, “Design of planar artificial magnetic conductor ground plane using frequency-selective surfaces for frequencies below 1 GHz,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 951–954, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Luukkonen, C. R. Simovski, and S. A. Tretyakov, “Grounded uniaxial material slabs as magnetic conductors,” Progress in Electromagnetics Research B, no. 15, pp. 267–283, 2009. View at Google Scholar · View at Scopus
  8. H. Shaban, H. Elmikaty, and A. Shaalan, “Study the effects of electromagnetic band-gap (EBG) substrate on two patch microstrip antenna,” Progress in Electromagnetics Research B, vol. 10, pp. 55–74, 2008. View at Google Scholar
  9. A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 1, pp. 209–215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Mosallaei and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 9, pp. 2403–2414, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Akhoondzadeh-Asl, D. J. Kern, P. S. Hall, and D. H. Werner, “Wideband dipoles on electromagnetic bandgap ground planes,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 9, pp. 2426–2434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Liang and H. Y. D. Yang, “Radiation characteristics of a microstrip patch over an electromagnetic bandgap surface,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 6, pp. 1691–1697, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Yang and Y. Rahmat-Samii, “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2691–2703, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Sohn, K. Y. Kim, H. S. Tae, and J. H. Lee, “Comparative study on various artificial magnetic conductors for low-profile antenna,” Progress in Electromagnetics Research, vol. 61, pp. 27–37, 2006. View at Google Scholar · View at Scopus
  15. S. Chaimool, K. L. Chung, and P. Akkaraekthalin, “Bandwidth and gain enhancement of microstrip patch antennas using reflective metasurface,” IEICE Transactions on Communications, vol. E93-B, no. 10, pp. 2496–2503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Nashaat, H. A. Elsadek, E. A. Abdallah, M. F. Iskander, and H. M. Elhenawy, “Ultrawide bandwidth 2×2 microstrip patch array antenna using electromagnetic band-gap structure (EBG),” IEEE Transactions on Antennas and Propagation, vol. 59, no. 5, pp. 1528–1534, 2011. View at Publisher · View at Google Scholar
  17. “ADS Momentum EM simulator tool,” http://www.agilent.com/find/eesof.
  18. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexöpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2059–2074, 1999. View at Google Scholar
  19. M. E. de Cos, Y. Álvarez, R. C. Hadarig, and F. Las-Heras, “Novel SHF-band uniplanar artificial magnetic conductor,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 44–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Aminian, F. Yang, and Y. Rahmat-Samii, “In-phase reflection and EM wave suppression characteristics of electromagnetic band gap ground planes,” in IEEE International Antennas and Propagation Symposium, vol. 4, pp. 430–433, June 2003. View at Scopus
  21. L. Yang, M. Fan, F. Chen, J. She, and Z. Feng, “A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 1, pp. 183–190, 2005. View at Publisher · View at Google Scholar
  22. M. E. de Cos, Y. Álvarez, and F. Las-Heras, “Enhancing patch antenna bandwidth by means of uniplanar EBG-AMC,” Microwave and Optical Technology Letters, vol. 53, no. 6, pp. 1372–1377, 2011. View at Publisher · View at Google Scholar