Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 636349, 7 pages
Research Article

An Empirical Path-Loss Model for Wireless Channels in Indoor Short-Range Office Environment

Jiangsu Key Laboratory of Wireless Communications, College of Telecommunications and Information Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210003, China

Received 31 August 2011; Accepted 3 November 2011

Academic Editor: Dau-Chyrh Chang

Copyright © 2012 Ye Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A novel empirical path-loss model for wireless indoor short-range office environment at 4.3–7.3 GHz band is presented. The model is developed based on the experimental datum sampled in 30 office rooms in both line of sight (LOS) and non-LOS (NLOS) scenarios. The model is characterized as the path loss to distance with a Gaussian random variable due to the shadow fading by using linear regression. The path-loss exponent is fitted by the frequency using power function and modeled as a frequency-dependent Gaussian variable as the standard deviation of . The presented works should be available for the research of wireless channel characteristics under universal indoor short-distance environments in the Internet of Things (IOT).