Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 636349, 7 pages
http://dx.doi.org/10.1155/2012/636349
Research Article

An Empirical Path-Loss Model for Wireless Channels in Indoor Short-Range Office Environment

Jiangsu Key Laboratory of Wireless Communications, College of Telecommunications and Information Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210003, China

Received 31 August 2011; Accepted 3 November 2011

Academic Editor: Dau-Chyrh Chang

Copyright © 2012 Ye Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. International Telecommunication Union, ITU reports 2005 executive summary: Internet of Things, http://www.itu.int/osg/spu/publications/internetofthings/InternetofThings_summary.pdf.
  2. A. A. M. Saleh and R. A. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128–137, 1987. View at Google Scholar · View at Scopus
  3. S. J. Howard and K. Pahlavan, “Measurement and analysis of the indoor radio channel in the frequency domain,” IEEE Transactions on Instrumentation and Measurement, vol. 39, no. 5, pp. 751–755, 1990. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Hashemi, “The indoor radio propagation channel,” Proceedings of the IEEE, vol. 81, no. 7, pp. 943–968, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Cassioli, M. Z. Win, and A. F. Molisch, “The ultra-wide bandwidth indoor channel: from statistical model to simulations,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 6, pp. 1247–1257, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Foerster, Ed., “Channel Modeling Sub-committee Report Final,” IEEE802.15-02/490, http://ieee802.org/15.
  7. S. S. Ghassemzadeh, R. Jana, C. W. Rice, W. Turin, and V. Tarokh, “Measurement and modeling of an ultra-wide bandwidth indoor channel,” IEEE Transactions on Communications, vol. 52, no. 10, pp. 1786–1796, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Y. Seidel and T. S. Rappaport, “914 MHz path loss prediction models for indoor wireless communications in multifloored buildings,” IEEE Transactions on Antennas and Propagation, vol. 40, no. 2, pp. 207–217, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Poutanen, K. Haneda, J. Salmi, V. M. Kolmonen, J. Koivunen, and P. Almers, “Analysis of radio wave propagation from an indoor hall to a corridor,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium and Usnc/Ursi National Radio Science Meeting, vol. 1–6, pp. 2683–2686, 2009.
  10. N. Noori, R. Karimzadeh-Baee, and A. Abolghasemi, “An empirical ultra wideband channel model for indoor laboratory environments,” Radioengineering, vol. 18, no. 1, pp. 68–74, 2009. View at Google Scholar · View at Scopus
  11. S. Geng and P. Vainikainen, “Millimeter-wave propagation in indoor corridors,” IEEE Antennas and Wireless Propagation Letters, vol. 8, Article ID 5308233, pp. 1242–1245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Y. Lim, Z. Yun, J. M. Baker, N. Celik, H. S. Youn, and M. F. Iskander, “Propagation modeling and measurement for a multifloor stairwell,” IEEE Antennas and Wireless Propagation Letters, vol. 8, Article ID 4907144, pp. 583–586, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Valcarce and J. Zhang, “Empirical indoor-to-outdoor propagation model for residential areas at 0.9–3.5 GHz,” IEEE Antennas and Wireless Propagation Letters, vol. 9, Article ID 5510104, pp. 682–685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. S. Ghassemzadeh, R. Jana, C. W. Rice, W. Turin, and V. Tarokh, “A statistical path loss model for in-home UWB channels,” in Proceedings of the IEEE Conference on Ultra Wideband Systems and Technologies, pp. 59–64, 2002.
  15. V. Erceg, L. J. Greenstein, S. Y. Tjandra et al., “Empirically based path loss model for wireless channels in suburban environments,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 7, pp. 1205–1211, 1999. View at Publisher · View at Google Scholar · View at Scopus