Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 712318, 13 pages
http://dx.doi.org/10.1155/2012/712318
Research Article

A Subspace-Based Compensation Method for the Mutual Coupling in Concentric Circular Ring Arrays for Near-Field Source Localisation

Centre for Health Technologies, School of Electrical, Mechanical and Mechatronic Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), P.O. Box 123, Broadway, NSW 2007, Australia

Received 14 June 2011; Accepted 5 September 2011

Academic Editor: Hoi Shun Lui

Copyright © 2012 Mohammed Jainul Abedin and Ananda Sanagavarapu Mohan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. J. Gupta and A. A. Ksienski, “Effect of mutual coupling on the performance of adaptive arrays,” IEEE Transactions on Antennas and Propagation, vol. 31, no. 5, pp. 785–791, 1983. View at Google Scholar · View at Scopus
  2. H. T. Hui, “Improved compensation for the mutual coupling effect in a dipole array for direction finding,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 9, pp. 2498–2503, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. T. T. Zhang, H. T. Hui, and Y. L. Lu, “Compensation for the mutual coupling effect in the ESPRIT direction finding algorithm by using a more effective method,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 4, pp. 1552–1555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. T. Zhang, Y. L. Lu, and H. T. Hui, “Compensation for the mutual coupling effect in uniform circular arrays for 2D DOA estimations employing the maximum likelihood technique,” IEEE Transactions on Aerospace and Electronic Systems, vol. 44, no. 3, pp. 1215–1221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. K. R. Dandekar, H. Ling, and G. Xu, “Experimental study of mutual coupling compensation in smart antenna applications,” IEEE Transactions on Wireless Communications, vol. 1, no. 3, pp. 480–487, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. R. S. Adve and T. K. Sarkar, “Compensation for the effects of mutual coupling on direct data domain adaptive algorithms,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 1, pp. 86–94, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Rogier and D. De Zutter, “Beamforming strategies for compact arrays in mobile terminals using the exact active element pattern method,” Microwave and Optical Technology Letters, vol. 35, no. 3, pp. 201–203, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. C. K. E. Lau, R. S. Adve, and T. K. Sarkar, “Minimum norm mutual coupling compensation with applications in direction of arrival estimation,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 8, pp. 2034–2041, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. Q. Yuan, Q. Chen, and K. Sawaya, “Accurate DOA estimation using array antenna with arbitrary geometry,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 4, pp. 1352–1357, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. J. Weiss and B. Friedlander, “DOA and steering vector estimation using a partially calibrated array,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32, no. 3, pp. 1047–1057, 1996. View at Google Scholar · View at Scopus
  11. E. K. L. Hung, “Matrix-construction calibration method for antenna arrays,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 3, pp. 819–828, 2000. View at Google Scholar · View at Scopus
  12. Q. Bao, C. C. Ko, and W. Zhi, “DOA estimation under unknown mutual coupling and multipath,” IEEE Transactions on Aerospace and Electronic Systems, vol. 41, no. 2, pp. 565–573, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Kikuchi, H. Tsuji, and A. Sano, “Autocalibration algorithm for robust Capon beamforming,” IEEE Antennas and Wireless Propagation Letters, vol. 5, no. 1, Article ID 874070, pp. 251–255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Friedlander and A. J. Weiss, “Direction finding in the presence of mutual coupling,” IEEE Transactions on Antennas and Propagation, vol. 39, no. 3, pp. 273–284, 1991. View at Google Scholar · View at Scopus
  15. H. S. Lui and H. T. Hui, “Improved mutual coupling compensation in compact antenna arrays,” IET Microwaves, Antennas and Propagation, vol. 4, no. 10, pp. 1506–1516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. H. S. Lui, H. T. Hui, and M. S. Leong, “A note on the mutual-coupling problems in transmitting and receiving antenna arrays,” IEEE Antennas and Propagation Magazine, vol. 51, no. 5, Article ID 5432083, pp. 171–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. H. S. Lui and H. T. Hui, “Mutual coupling compensation for direction-of-arrival estimations using the receiving-mutual-impedance method,” International Journal of Antennas and Propagation, vol. 2010, Article ID 373061, 7 pages, 2010. View at Publisher · View at Google Scholar
  18. C. P. Mathews and M. D. Zoltowski, “Eigenstructure techniques for 2-D angle estimation with uniform circular arrays,” IEEE Transactions on Signal Processing, vol. 42, no. 9, pp. 2395–2407, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. M. D. Zoltowski, M. Haardt, and C. P. Mathews, “Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT,” IEEE Transactions on Signal Processing, vol. 44, no. 2, pp. 316–328, 1996. View at Google Scholar · View at Scopus
  20. R. L. Haupt, “Optimized element spacing for low sidelobe concentric ring arrays,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 1, pp. 266–268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Ye and C. Liu, “2-D DOA estimation in the presence of mutual coupling,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 10, pp. 3150–3158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer-Rao bound,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 5, pp. 720–741, 1989. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Svantesson, “Modeling and estimation of mutual coupling in a uniform linear array of dipoles,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '99), pp. 2961–2964, Phoenix, Ariz, USA, March 1999. View at Scopus
  24. T. Huang and A. S. Mohan, “Effects of array mutual coupling on near-field DOA estimation,” in Proceedings of the Canadian Conference on Electrical and Computer Engineering: Toward a Caring and Humane Technology (CCECE '03), pp. 1881–1884, May 2003. View at Scopus
  25. S. H. Lee, C. S. Ryu, and K. K. Lee, “Near-field source localisation using bottom-mounted linear sensor array in multipath environment,” IEE Proceedings: Radar, Sonar and Navigation, vol. 149, no. 4, pp. 202–206, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. C. P. Mathews and M. D. Zoltowski, “Performance analysis of the UCA-ESPRIT algorithm for circular ring arrays,” IEEE Transactions on Signal Processing, vol. 42, no. 9, pp. 2535–2539, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. FEKO EM Software and Systems S.A. (Pty) Ltd, 32 Techno Lane, Technopark, Stellenbosch, 7600, South Africa.