Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 713594, 8 pages
http://dx.doi.org/10.1155/2012/713594
Research Article

A New Generation Method for Spatial-Temporal Correlated MIMO Nakagami Fading Channel

1College of Electronic Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2School of Software, Tsinghua University, Beijing 100084, China
3National Mobile Communications Research Laboratory, Southeast University, Nanjing 210008, China

Received 10 July 2011; Accepted 5 September 2011

Academic Editor: Yan Zhang

Copyright © 2012 Qiu-Ming Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Transactions on Telecommunications, vol. 10, no. 6, pp. 585–595, 1999. View at Google Scholar · View at Scopus
  2. M. Nakagami, The m-Distribution: A General Formula of Intensity Distribution of Rapid Fading Statistical Methods of Radio Wave Propagation, W.C. Hoffman, Japan, 1960.
  3. M. Matthaiou, D. I. Laurenson, and J. S. Thompson, “A MIMO channel model based on the Nakagami-faded spatial eigenmodes,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 5, pp. 1494–1497, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Zhong, K. K. Wong, and S. Jin, “Capacity bounds for MIMO Nakagami-m fading channels,” IEEE Transactions on Signal Processing, vol. 57, no. 9, pp. 3613–3623, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. K. W. Yip and T. S. Ng, “A simulation model for nakagami-m fading channels, m < 1,” IEEE Transactions on Communications, vol. 48, no. 2, pp. 214–221, 2000. View at Google Scholar · View at Scopus
  6. Q. T. Zhang, “Decomposition technique for efficient generation of correlated Nakagami fading channels,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 11, pp. 2385–2392, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. N. C. Beaulieu and C. Cheng, “Efficient nakagami- fading channel simulation,” IEEE Transactions on Vehicular Technology, vol. 54, no. 2, pp. 413–424, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Cao and N. C. Beaulieu, “Simple efficient methods for generating independent and bivariate Nakagami-m fading envelope samples,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4 I, pp. 1573–1579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Matthaiou and D. I. Laurenson, “Rejection method for generating Nakagami-m independent deviates,” Electronics Letters, vol. 43, no. 25, pp. 1474–1475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Ma and D. Zhang, “A method for simulating complex nakagami fading time series with nonuniform phase and prescribed autocorrelation characteristics,” IEEE Transactions on Vehicular Technology, vol. 59, no. 1, Article ID 5223623, pp. 29–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. C. S. Silveira Santos Filho and M. D. Yacoub, “On the simulation and correlation properties of phase-envelope nakagami fading processes,” IEEE Transactions on Communications, vol. 57, no. 4, pp. 906–909, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Zhang, Z. Song, and Y. L. Guan, “Simulation of nakagami fading channels with arbitrary cross-correlation and fading parameters,” IEEE Transactions on Wireless Communications, vol. 3, no. 5, pp. 1463–1468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. L. C. Tran, T. A. Wysocki, and J. Seberry, “A generalized algorithm for the generation of correlated Rayleigh fading envelopes in radio channels,” in Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium, (IPDPS'05), vol. 13, p. 238, Denver, Colo, USA, 2005.
  14. A. Papoulis and S. U. Pillai, Probability Random Variables and Stochastic Processes, McGraw-Hill, Boston, Mass, USA, 4th edition, 2002.
  15. E. L. Lehmann and H. L. M. D'Abrera, Nonparametrics: Statistical Methods Based on Ranks, McGraw-Hill, New York, NY, USA, 1975.
  16. W. C. Jakes, Microwave Mobile Communications, Wiley, New York, NY, USA, 1974.
  17. K. E. Baddour and N. C. Beaulieu, “Autoregressive modeling for fading channel simulation,” IEEE Transactions on Wireless Communications, vol. 4, no. 4, pp. 1650–1662, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. M. Zhu, D. Z. Xu, and X. M. Chen, “Modified channel model for non-isotropic scattering environments,” in Proceedings of the International Conference on Wireless Communications & Signal Processing, (WCSP '09), pp. 1–5, Nanjing, China, November 2009.
  19. C. H. Simon, “Generation of Poisson and Gamma random vectors with given marginal and covariance matrix,” Journal of Statistical Computation and Simulation, vol. 47, no. 1, pp. 1–10, 1993. View at Google Scholar
  20. P. G. Moschopoulos, “The distribution of the sum of independent gamma random variables,” Annals of the Institute of Statistical Mathematics, vol. 37, no. 1, pp. 541–544, 1985. View at Publisher · View at Google Scholar · View at Scopus
  21. J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, “A stochastic MIMO radio channel model with experimental validation,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 6, pp. 1211–1226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Abdi, J. A. Barger, and M. Kaveh, “A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station,” IEEE Transactions on Vehicular Technology, vol. 51, no. 3, pp. 425–434, 2002. View at Publisher · View at Google Scholar · View at Scopus