Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012 (2012), Article ID 749829, 16 pages
http://dx.doi.org/10.1155/2012/749829
Research Article

A Large-Scale Space-Time Stochastic Simulation Tool of Rain Attenuation for the Design and Optimization of Adaptive Satellite Communication Systems Operating between 10 and 50 GHz

1Département Electromagnétisme et Radar, ONERA, 2 Avenue Edouard Belin, 31055 Toulouse, France
2Laboratoire Plasma et Conversion d'Energie, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
3Laboratoire d'Aérologie, 118 Route de Narbonne, 31062 Toulouse, Université Paul Sabatier, France
4Centre National d'√Čtudes Spatiales (CNES), 18 Avenue Edouard Belin, 31401 Toulouse, France

Received 9 December 2011; Accepted 23 January 2012

Academic Editor: Athanasios Panagopoulos

Copyright © 2012 Nicolas Jeannin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The design and optimization of propagation impairment techniques for space telecommunication systems operating at frequencies above 20 GHz require a precise knowledge of the propagation channel both in space and time. For that purpose, space-time channel models have to be developed. In this paper the description of a model for the simulation of long-term rain attenuation time series correlated both in space and time is described. It relies on the definition of a stochastic rain field simulator constrained by the rain amount outputs of the ERA-40 reanalysis meteorological database. With this methodology, realistic propagation conditions can be generated at the scale of satellite coverage (i.e., over Europe or USA) for many years. To increase the temporal resolution, a stochastic interpolation algorithm is used to generate spatially correlated time series sampled at 1 Hz, providing that way valuable inputs for the study of the performances of propagation impairment techniques required for adaptive SatCom systems operating at Ka band and above.