Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 749829, 16 pages
http://dx.doi.org/10.1155/2012/749829
Research Article

A Large-Scale Space-Time Stochastic Simulation Tool of Rain Attenuation for the Design and Optimization of Adaptive Satellite Communication Systems Operating between 10 and 50 GHz

1Département Electromagnétisme et Radar, ONERA, 2 Avenue Edouard Belin, 31055 Toulouse, France
2Laboratoire Plasma et Conversion d'Energie, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
3Laboratoire d'Aérologie, 118 Route de Narbonne, 31062 Toulouse, Université Paul Sabatier, France
4Centre National d'Études Spatiales (CNES), 18 Avenue Edouard Belin, 31401 Toulouse, France

Received 9 December 2011; Accepted 23 January 2012

Academic Editor: Athanasios Panagopoulos

Copyright © 2012 Nicolas Jeannin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Cost 255, “Radiowave propagation modelling for new SatCom services at Ku-band and above,” Final Report, ESA Publication Division, Noordwijk, The Netherlands, 2002. View at Google Scholar
  2. M. Bousquet, L. Castantet, L. Féral, P. Pech, and J. Lemorton, “Application of a model of spatial correlated time-series, into a simulation platform of adaptive resource management for Ka-band OBP satellite systems,” in Proceedings of the 3rd COST 280 Workshop, Noordwijk, The Netherlands, May 2003.
  3. T. Maseng and P. M. Bakken, “A stochastic dynamic model of rain attenuation,” IEEE Transactions on Communications Systems, vol. 29, no. 5, pp. 660–669, 1981. View at Google Scholar · View at Scopus
  4. R. M. Manning, “Unified statistical rain-attenuation model for communication link fade predictions and optimal stochastic fade control design using a location-dependent rain-statistics database,” International Journal of Satellite Communications, vol. 8, no. 1, pp. 11–30, 1990. View at Google Scholar · View at Scopus
  5. B. C. Gremont and M. Filip, “Spatio-temporal rain attenuation model for application to fade mitigation techniques,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 5, pp. 1245–1256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Carrié, F. Lacoste, and L. Castanet, “New ‘on-demand’ channel model to synthesise rain attenuation time series at Ku-, Ka- and Q/V-bands,” International Journal of Satellite Communications and Networking, vol. 29, no. 1, pp. 47–60, 2011. View at Publisher · View at Google Scholar
  7. S. A. Kanellopoulos, A. D. Panagopoulos, and J. D. Kanellopoulos, “Calculation of the dynamic input parameter for a stochastic model simulating rain attenuation: a novel mathematical approach,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 11, pp. 3257–3264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Castanet, M. Bousquet, and D. Mertens, “Simulation of the performance of a Ka-band VSAT videoconferencing system with uplink power control and data rate reduction to mitigate atmospheric propagation effects,” International Journal of Satellite Communications, vol. 20, no. 4, pp. 231–249, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. A. D. Panagopoulos, P.-D. M. Arapoglou, A. D. Panagopoulos, G. E. Chatzarakis, J. D. Kanellopoulos, and P.G. Cottis, “Unbalanced large scale multiple site diversity performance in satellite communication networks,” in Proceedings of the 28th URSI General Assembly, New Delhi, India, 2005.
  10. C. Capsoni, F. Fedi, and A. Paraboni, “A comprehensive meteorologically oriented methodology for the prediction of wave propagation parameters in telecommunication applications beyond 10 GHz,” Radio Science, vol. 22, no. 3, pp. 387–393, 1987. View at Google Scholar · View at Scopus
  11. C. Capsoni, F. Fedi, C. Magistroni, A. Paraboni, and A. Pawlina, “Data and theory for a new model of the horizontal structure of rain cells for propagation applications,” Radio Science, vol. 22, no. 3, pp. 395–404, 1987. View at Google Scholar · View at Scopus
  12. L. Féral, H. Sauvageot, L. Castanet, and J. Lemorton, “HYCELL—A new hybrid model of the rain horizontal distribution for propagation studies: 1. Modeling of the rain cell,” Radio Science, vol. 38, no. 3, pp. 22/1–22/30, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Féral, H. Sauvageot, L. Castanet, and J. Lemorton, “HYCELL—a new hybrid model of the rain horizontal distribution for propagation studies: 2. Statistical modeling of the rain rate field,” Radio Science, vol. 38, no. 3, Article ID 1057, 18 pages, 2003. View at Publisher · View at Google Scholar
  14. L. Féral, H. Sauvageot, L. Castanet, J. Lemorton, F. Cornet, and K. Leconte, “Large-scale modeling of rain fields from a rain cell deterministic model,” Radio Science, vol. 41, no. 2, Article ID RS2010, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Montopoli and F. S. Marzano, “Maximum-likelihood retrieval of modeled convective rainfall patterns from midlatitude C-band weather radar data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 7, pp. 2403–2416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Luini and C. Capsoni, “MultiEXCELL: a new rain field model for propagation applications,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 11, pp. 4286–4300, 2011. View at Publisher · View at Google Scholar
  17. S. A. Callaghan, “Fractal modelling of rain fields: from event-on-demand to annual statistics,” in Proceedings of The European Conference on Antennas and Propagation (EuCAP '06), vol. SP-626, Nice, France, November 2006.
  18. A. D. Panagopoulos and J. D. Kanellopoulos, “On the rain attenuation dynamics: spatial-temporal analysis of rainfall rate and fade duration statistics,” International Journal of Satellite Communications and Networking, vol. 21, no. 6, pp. 595–611, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. T. L. Bell, “A space-time stochastic-dynamic model of rainfall for satellite remote sensing studies,” Journal of Geophysical Research, vol. 92, no. D8, pp. 9631–9643, 1987. View at Google Scholar
  20. S. Bertorelli and A. Paraboni, “Simulation of joint statistics of rain attenuation in multiple sites across wide areas using ITALSAT data,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 8, pp. 2611–2622, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Guillot, “Approximation of Sahelian rainfall fields with meta-Gaussian random functions. Part 1: model definition and methodology,” Stochastic Environmental Research and Risk Assessment, vol. 13, no. 1-2, pp. 100–112, 1999. View at Google Scholar · View at Scopus
  22. A. Mantoglou and J. L. Wilson, “The turning bands method for simulation of random fields using line generation by a spectral method,” Water Resources Research, vol. 18, no. 5, pp. 1379–1394, 1982. View at Google Scholar · View at Scopus
  23. B. Kozintsev and B. Kedem, “Generation of "Similar" images from a given discrete image,” Journal of Computational and Graphical Statistics, vol. 9, no. 2, pp. 286–302, 2000. View at Google Scholar · View at Scopus
  24. M. Fuentes, “Testing for separability of spatial-temporal covariance functions,” Journal of Statistical Planning and Inference, vol. 136, no. 2, pp. 447–466, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. ITU-R P.837: Characteristics of precipitation for propagation modeling, ITU-R P Series Recommendations-Radiowave Propagation, 2007.
  26. J. P. V. Poiares-Baptista and E. T. Salonen, “Review of rainfall rate modelling and mapping,” in Proceedings of URSI-F Open Symposium on Climatic Parameters in Radiowave Prediction (Climpara '98), pp. 35–44, Ottawa, Canada, April 1998.
  27. L. Castanet, C. Capsoni, G. Blarzino, D. Ferraro, and A. Martellucci, “Development of a new global rainfall rate model based on ERA40, TRMM and GPCC products,” in Proceedings of the International Symposium on Antennas and Propagation (ISAP '07), Niigata, Japan, August 2007.
  28. H. Sauvageot, “The probability density function of rain rate and the estimation of rainfall by area integrals,” Journal of Applied Meteorology, vol. 33, no. 11, pp. 1255–1262, 1994. View at Google Scholar
  29. J. D. Kanellopoulos and S. G. Koukoulas, “Analysis of the rain outage performance of route diversity systems,” Radio Science, vol. 22, no. 4, pp. 549–565, 1987. View at Google Scholar · View at Scopus
  30. J. P. Kuettner, “General description and central program of GATE,” Bulletin of the American Meteorological Society, vol. 55, no. 7, pp. 712–719, 1974. View at Google Scholar
  31. L. Feral, F. Mesnard, H. Sauvageot, L. Castanets, and J. Lemorton, “Rain cells shape and orientation distribution in South-West of France,” Physics and Chemistry of the Earth, vol. 25, no. 10–12, pp. 1073–1078, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. E. A. B. Eltahir and R. L. Bras, “Estimation of the fractional coverage of rainfall in climate models,” Journal of Climate, vol. 6, no. 4, pp. 639–656, 1993. View at Google Scholar · View at Scopus
  33. A. Nzeukou and H. Sauvageot, “Distribution of rainfall parameters near the coasts of France and Senegal,” Journal of Applied Meteorology, vol. 41, no. 1, pp. 69–82, 2002. View at Google Scholar · View at Scopus
  34. J. Rivoirard, Introduction to Disjunctive Kriging and non Linear Geostatistics, Oxford Clarendon Press, Oxford, UK, 1994.
  35. F. Barbaliscia, G. Ravaioli, and A. Paraboni, “Characteristics of the spatial statistical dependence of rainfall rate over large areas,” IEEE Transactions on Antennas and Propagation, vol. 40, no. 1, pp. 8–12, 1992. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Luini, N. Jeannin, C. Capsoni et al., “Weather radar data for site diversity predictions and evaluation of the impact of rain field advection,” International Journal of Satellite Communications and Networking, vol. 29, no. 1, pp. 79–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Ferraris, S. Gabellani, U. Parodi, N. Rebora, J. Von Hardenberg, and A. Provenzale, “Revisiting multifractality in rainfall fields,” Journal of Hydrometeorology, vol. 4, no. 3, pp. 544–551, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. S. M. Uppala, P. W. Kållberg, A. J. Simmons et al., “The ERA-40 re-analysis,” Quarterly Journal of the Royal Meteorological Society, vol. 131, no. 612, pp. 2961–3012, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. D. D. Hodges, R. J. Watson, and G. Wyman, “An attenuation time series model for propagation forecasting,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 6, pp. 1726–1733, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. A. Doneaud, S. Ionescu-Niscov, D. L. Priegnitz, and P. L. Smith, “The Area-Time Integral as an indicator for convective rain volumes,” Journal of Climate & Applied Meteorology, vol. 23, no. 4, pp. 555–561, 1984. View at Google Scholar · View at Scopus
  41. L. S. Chiu, “Estimating areal rainfall from rain area,” in Tropical Rainfall Measurements, J. S. Theon and N. Fugono, Eds., pp. 361–367, A. Deepak, New delhi, India, 1988. View at Google Scholar
  42. D. Atlas and T. L. Bell, “The relation of radar to cloud area-time integrals and implications for rain measurements from space,” Monthly Weather Review, vol. 120, no. 9, pp. 1997–2008, 1992. View at Google Scholar · View at Scopus
  43. N. Jeannin, L. Féral, H. Sauvageot, L. Castanet, and J. Lemorton, “Statistical distribution of the fractional area affected by rain,” Journal of Geophysical Research D, vol. 113, no. 21, Article ID D21120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. H. D. Kitzmiller, G. F. Samplatsky, and C. Mello, “Probabilistic forecasts of severe local storms in the 0–3 hour timeframe from an advective-statistical technique,” in Proceedings of the 19th Conference on weather Analysis and Forecasting/15th Conference on Numerical Weather Prediction, San-Antonio, Tex, USA, August 2002.
  45. ITU-R P.838: Specific attenuation model for rain for use in prediction methods, ITU-R P Series Recommendations-Radiowave Propagation, 2005.
  46. ITU-R P.1511: Topography for Earth-to-space propagation modelling, ITU-R P Series Recommendations-Radiowave Propagation, 2001.
  47. ITU-R P.839: Rain height model for prediction methods, ITU-R P Series Recommendations-Radiowave Propagation, 2001.
  48. ITU-R P.618: Propagation data and prediction methods required for the design of Earth-space telecommunication systems, ITU-R P Series Recommendations-Radiowave Propagation, 2009.
  49. OPEX, “Reference book on attenuation measurement and prediction,” in Proceedings of the 2nd Workshop of the OLYMPUS Propagation Experimenters (OPEX), Doc ESA-ESTEC-WPP-083, vol. 1, Noordwijk, The Netherlands, 1994.