Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012 (2012), Article ID 754158, 21 pages
Research Article

Bounding the Practical Error of Path Loss Models

Computer Science Department, University of Colorado Boulder, Boulder, CO 80309, USA

Received 21 December 2011; Revised 4 March 2012; Accepted 18 March 2012

Academic Editor: Athanasios Panagopoulos

Copyright © 2012 Caleb Phillips et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We seek to provide practical lower bounds on the prediction accuracy of path loss models. We describe and implement 30 propagation models of varying popularity that have been proposed over the last 70 years. Our analysis is performed using a large corpus of measurements collected on production networks operating in the 2.4 GHz ISM, 5.8 GHz UNII, and 900 MHz ISM bands in a diverse set of rural and urban environments. We find that the landscape of path loss models is precarious: typical best-case performance accuracy of these models is on the order of 12–15 dB root mean square error (RMSE) and in practice it can be much worse. Models that can be tuned with measurements and explicit data fitting approaches enable a reduction in RMSE to 8-9 dB. These bounds on modeling error appear to be relatively constant, even in differing environments and at differing frequencies. Based on our findings, we recommend the use of a few well-accepted and well-performing standard models in scenarios where a priori predictions are needed and argue for the use of well-validated, measurement-driven methods whenever possible.