Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012 (2012), Article ID 760489, 10 pages
Research Article

Range-Angle-Dependent Beamforming by Frequency Diverse Array Antenna

1School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2State Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China

Received 25 February 2012; Accepted 13 June 2012

Academic Editor: Marco Antonio Panduro-Mendoza

Copyright © 2012 Wen-Qin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper proposes a range-angle-dependent beamforming for frequency diverse array (FDA) antenna systems. Unlike conventional phased-array antenna, the FDA antenna employs a small amount of frequency increment compared to the carrier frequency across the array elements. The use of frequency increment generates an antenna pattern that is a function of range, time and angle. The range-angle-dependent beamforming allows the FDA antenna to transmit energy over a desired range or angle. This provides a potential to suppress range-dependent clutter and interference which is not accessible for conventional phased-array systems. In this paper, a FDA radar signal model is formed and the range-angle-dependent beamforming performance is examined by analyzing the transmit/receive beampatterns and the output signal-to-interference-plus-noise ratio (SINR) performance. Extensive simulation examples and results are provided.