Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012 (2012), Article ID 790164, 6 pages
http://dx.doi.org/10.1155/2012/790164
Research Article

A Domain Decomposition Method for Hybrid Shell Vector Element with Boundary Integral Method

School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Received 8 June 2012; Accepted 1 August 2012

Academic Editor: Zhongxiang Q. Shen

Copyright © 2012 Lin Lei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. F. Harrington and J. R. Mautz, “An impedance sheet approximation for thin dielectric shells,” IEEE Transactions on Antennas and Propagation, vol. 23, no. 4, pp. 531–534, 1975. View at Google Scholar · View at Scopus
  2. C. Lu, “A modified thin dielectric approximation for calculation of em scattering by dielectric objects with thin material coating,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, pp. 2809–2812, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. I. T. Chiang and W. C. Chew, “Thin dielectric sheet simulation by surface integral equation using modified RWG and pulse bases,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 7, pp. 1927–1934, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. I. T. Chiang and W. C. Chew, “A coupled PEC-TDS surface integral equation approach for electromagnetic scattering and radiation from composite metallic and thin dielectric objects,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 11, pp. 3511–3516, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Pan and R. M. Narayanan, “Electromagnetic scattering from a dielectric sheet using the method of moments with approximate boundary condition,” Electromagnetics, vol. 24, no. 5, pp. 369–384, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. He, Z. Nie, J. Wei, and J. Hu, “Numerical solution for dielectric-coated PEC targets based on multi-layer TDS approximation,” in Proceedings of the Asia Pacific Microwave Conference (APMC '08), December 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. He, Z. Nie, J. Wei, and J. Hu, “A highly efficient numerical solution for dielectric-coated PEC targets,” Waves in Random and Complex Media, vol. 19, no. 1, pp. 65–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. S. Wang, “Limits and validity of the impedance boundary condition on penetrable surfaces,” IEEE Transactions on Antennas and Propagation, vol. 35, no. 4, pp. 453–457, 1987. View at Google Scholar · View at Scopus
  9. P. M. Goggans, A. A. Kishk, and A. W. Glisson, “A systematic treatment of conducting and dielectric bodies with arbitrarily thick or thin features using the method of moments,” IEEE Transactions on Antennas and Propagation, vol. 40, no. 5, pp. 555–559, 1992. View at Publisher · View at Google Scholar · View at Scopus
  10. J. L. Volakis, T. Özdemir, and J. Gong, “Hybrid finite-element methodologies for antennas and scattering,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 3, pp. 493–507, 1997. View at Google Scholar · View at Scopus
  11. X. Q. Sheng, J. M. Jin, J. Song, C. C. Lu, and W. C. Chew, “On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 3, pp. 303–311, 1998. View at Google Scholar · View at Scopus
  12. J. M. Jin and J. L. Volakis, “A finite-element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures,” IEEE Transactions on Antennas and Propagation, vol. 39, no. 1, pp. 97–104, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Ren, “Degenerated whitney prism elements—general nodal and edge shell elements for field computation in thin structures,” IEEE Transactions on Magnetics, vol. 34, no. 5, pp. 2547–2550, 1998. View at Google Scholar · View at Scopus
  14. L. Lei, J. Hu, and H. Quan Hu, “Solving scattering from conducting body coated by thin-layer material by hybrid shell vector element with boundary integral method,” International Journal of Antennas and Propagation, vol. 2012, Article ID 854647, 7 pages, 2012. View at Publisher · View at Google Scholar
  15. Z. Cui, Y. Han, X. Ai, and W. Zhao, “A domain decomposition of the finite element-boundary integral method for scattering by multiple objects,” Electromagnetics, vol. 31, pp. 469–482, 2011. View at Google Scholar
  16. M. M. Ilić and B. M. Notaroš, “Higher order FEM-MoM domain decomposition for 3-D electromagnetic analysis,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 970–973, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 6, pp. 758–766, 1986. View at Google Scholar · View at Scopus