Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 846153, 13 pages
http://dx.doi.org/10.1155/2012/846153
Research Article

Modeling and Simulation of MIMO Mobile-to-Mobile Wireless Fading Channels

1Communication Research Laboratory, Faculty of Electrical and Computer Engineering, Yazd University, Yazd 89168-69511, Iran
2Department of Electrical Engineering, University of Isfahan, Isfahan 81746-73441, Iran

Received 24 January 2012; Revised 21 March 2012; Accepted 22 March 2012

Academic Editor: Hon Tat Hui

Copyright © 2012 Gholamreza Bakhshi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Transactions on Communications, vol. 48, no. 3, pp. 502–513, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Abdi and M. Kaveh, “A space-time correlation model for multielement antenna systems in mobile fading channels,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 3, pp. 550–560, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Steinbauer, D. Hampicke, G. Sommerkorn et al., “Array measurement of the doubledirectional mobile radio channel,” in Proceedings of the IEEE Vehicular Technology Conference, pp. 1656–1662, Tokyo, Japan, 2000.
  4. M. Steinbauer, A. F. Molisch, and E. Bonek, “The double-directional radio channel,” IEEE Antennas and Propagation Magazine, vol. 43, no. 4, pp. 51–63, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Gesbert, H. Bölcskei, D. A. Gore, and A. J. Paulraj, “Outdoor MIMO wireless channels: models and performance prediction,” IEEE Transactions on Communications, vol. 50, no. 12, pp. 1926–1934, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. S. Akki and F. Haber, “A statistical model of radio mobile-to-mobile land communication channel,” IEEE Transactions on Vehicular Technology, vol. 35, no. 1, pp. 2–7, 1986. View at Google Scholar · View at Scopus
  7. A. S. Akki, “Statistical properties of mobile-to-mobile land communication channels,” IEEE Transactions on Vehicular Technology, vol. 43, no. 4, pp. 826–831, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. C. S. Patel, G. L. Stüber, and T. G. Pratt, “Simulation of Rayleigh-faded mobile-to-mobile communication channels,” IEEE Transactions on Communications, vol. 53, no. 11, pp. 1876–1884, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. A. G. Zajić and G. L. Stüber, “A new simulation model for mobile-to-mobile rayleigh fading channels,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '06), pp. 1266–1270, Las Vegas, Nev, USA, April 2006. View at Scopus
  10. M. Pätzold, B. O. Hogstad, N. Youssef, and D. Kim, “A MIMO mobileto-mobile channel model: part I-the reference model,” in Proceedings of the Personal, Indoor and Mobile Radio Communications (PIMRC '05), pp. 573–578, Berlin, Germany, September 2005.
  11. B. O. Hogstad, M. Pätzold, N. Youssef, and D. Kim, “A MIMO mobileto-mobile channel model: part II-the simulation model,” in Proceedings of the Personal, Indoor and Mobile Radio Communications (PIMRC '05), pp. 562–567, Berlin, Germany, September 2005.
  12. M. Pätzold, B. O. Hogstad, and N. Youssef, “Modeling, analysis, and simulation of MIMO mobile-to-mobile fading channels,” IEEE Transactions on Wireless Communications, vol. 7, no. 2, pp. 510–520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. G. Zajić and G. L. Stüber, “Space-time correlated MIMO mobile-to-mobile channels,” in Proceedings of the IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '06), Helsinki, Finland, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. G. Zajić and G. L. Stüber, “Simulation models for MIMO mobileto-mobile channels,” in Proceedings of the IEEE Military Communications Conference (MILCOM '06), pp. 1–7, Washington, DC, USA, October 2006.
  15. K. Yu and B. Ottersten, “Models for MIMO propagation channels: a review,” Wireless Communications and Mobile Computing, vol. 2, no. 7, pp. 653–666, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Yu, Multiple-input multiple-output radio propagation channels: characteristics and models, Doctoral thesis, Signals, Sensors and Systems, Royal Institute of Technology (KTH), 2005.
  17. S. Wang, A. Abdi, J. Salo et al., “Time-varying MIMO channels: parametric statistical modeling and experimental results,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 1949–1963, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Abdi, J. A. Barger, and M. Kaveh, “A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station,” IEEE Transactions on Vehicular Technology, vol. 51, no. 3, pp. 425–434, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. I. S. Gradshteyn and I. M. Ryzhik, “Table of Integral, Series and Products,” A. Jeffrey, Ed., Academic Press, San Diego, Calif, USA, 5th edition, 1994. View at Google Scholar
  20. G. Bakhshi, R. Saadat, and K. Shahtalebi, “A modified two-ring reference model for MIMO mobile-to-mobile communication channels,” in Proceedings of the International Symposium on Telecommunications (IST '08), pp. 409–413, Tehran, Iran, August 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. H. Clarke, “A statistical theory of mobile-radio reception,” Bell System Technical Journal, vol. 47, pp. 957–1000, 1968. View at Google Scholar
  22. M. Pätzold, Mobile Fading Channels, John Wiley & Sons, Chichester, UK, 2002.
  23. M. Pätzold, U. Killat, F. Laue, and Y. Li, “On the statistical properties of deterministic simulation models for mobile fading channels,” IEEE Transactions on Vehicular Technology, vol. 47, no. 1, pp. 254–269, 1998. View at Google Scholar · View at Scopus