Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 939104, 7 pages
http://dx.doi.org/10.1155/2012/939104
Research Article

Spatial Correlation and Ergodic Capacity of MIMO Channel in Reverberation Chamber

Department of Signals and Systems, Chalmers University of Technology, 41296 Gothenburg, Sweden

Received 27 July 2011; Accepted 26 September 2011

Academic Editor: Li Yang

Copyright © 2012 Xiaoming Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communication, Cambridge University Press, Cambridge, Mass, USA, 2003.
  2. K. Yu, M. Bengtsson, B. Ottersten, D. McNamara, P. Karlsson, and M. Beach, “Modeling of wide-band MIMO radio channels based on NLoS indoor measurements,” IEEE Transactions on Vehicular Technology, vol. 53, no. 3, pp. 655–665, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, “A stochastic MIMO radio channel model with experimental validation,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 6, pp. 1211–1226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Özcelik, M. Herdin, W. Weichselberger, J. Wallace, and E. Bonek, “Deficiencies of “Kronecker” MIMO radio channel model,” Electronics Letters, vol. 39, no. 16, pp. 1209–1210, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Chizhik, J. Ling, P. W. Wolniansky, R. A. Valenzuela, N. Costa, and K. Huber, “Multiple-input-multiple-output measurements and modeling in Manhattan,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 3, pp. 321–330, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Svantesson and J. W. Wallace, “Tests for assessing multivariate normality and the covariance structure of MIMO data,” in Proceedings of the IEEE International Conference on Accoustics, Speech, and Signal Processing, Hong Kong, April 2003. View at Scopus
  7. K. Rosengren and P.-S. Kildal, “Radiation efficiency, correlation, diversity gain and capacity of a six-monopole antenna array for a MIMO system: theory, simulation and measurement in reverberation chamber,” in Proceedings of the IEEE Microwaves, Optics and Antenna, vol. 152, pp. 7–16, February 2005. View at Publisher · View at Google Scholar
  8. J. F. Valdés, M. A. Fernandez, A. M. Gonzalez, and D. A. Hernandez, “The influence of efficiency on receive diversity and MIMO capacity for Rayleigh-fading channels,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 5, pp. 1444–1450, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Garcia-Garcia, B. Lindmark, N. Jaldén, and C. Orlenius, “MIMO capacity of antenna arrays evaluated using radio channel measurements, reverberation chamber and radiation patterns,” IET Microwaves, Antennas and Propagation, vol. 1, no. 6, pp. 1160–1169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Delangre, P. de Doncker, M. Lienard, and P. Degauque, “Coupled reverberation chambers for emulating MIMO channels,” Comptes Rendus Physique, vol. 11, no. 1, pp. 30–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Chen, P.-S. Kildal, J. Carlsson, and J. Yang, “Comparison of ergodic capacities from wideband MIMO antenna measurements in reverberation chamber and anechoic chamber,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 446–449, 2011. View at Publisher · View at Google Scholar
  12. J. G. Kostas and B. Boverie, “Statistical model for a mode-stirred chamber,” IEEE Transactions on Electromagnetic Compatibility, vol. 33, no. 4, pp. 366–370, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Vaughan and J. B. Andersen, Channels, Propagation and Antennas for Mobile Communications, Intelligent Energy Europe, London, UK, 2003.
  14. D. A. Hill, “Plane wave integral representation for fields in reverberation chambers,” IEEE Transactions on Electromagnetic Compatibility, vol. 40, no. 3, pp. 209–217, 1998. View at Google Scholar · View at Scopus
  15. X. Chen, P.-S. Kildal, C. Orlenius, and J. Carlsson, “Channel sounding of loaded reverberation chamber for over-the-air testing of wireless devices: coherence bandwidth versus average mode bandwidth and delay spread,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 678–681, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Matz, “Characterization of non-WSSUS fading dispersive channels,” in Proceedings of the International Conference on Communications (ICC '03), pp. 2480–2484, Anchorage, Alaska, USA, May 2003. View at Scopus
  17. C. L. Holloway, D. A. Hill, J. M. Ladbury, P. F. Wilson, G. Koepke, and J. Coder, “On the use of reverberation chamber to simulate a rician radio environment for the testing of wireless devices,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 11, pp. 3167–3177, 2006. View at Publisher · View at Google Scholar
  18. H. Fielitz, K. A. Remley, C. L. Holloway, Q. Zhang, Q. Wu, and D. W. Matolak, “Reverberation-chamber test environment for outdoor urban wireless propagation studies,” IEEE Antennas and Wireless Propagation Letters, vol. 9, Article ID 5406096, pp. 52–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Herdin, Non-stationary indoor MIMO radio channels, Ph.D. thesis, Vienna University of Technology, Vienna, Austria, 2004.
  20. D. A. Hill, “Electronic mode stirring for reverberation chambers,” IEEE Transactions on Electromagnetic Compatibility, vol. 36, no. 4, pp. 294–299, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Raghavan, J. H. Kotecha, and A. M. Sayeed, “Why does the Kronecker model result in misleading capacity estimates?” IEEE Transactions on Information Theory, vol. 56, no. 10, Article ID 5571876, pp. 4843–4864, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. S. Y. Poon, D. N. C. Tse, and R. W. Brodersen, “Impact of scattering on the capacity, diversity, and propagation range of multiple-antenna channels,” IEEE Transactions on Information Theory, vol. 52, no. 3, pp. 1087–1100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Henze and B. Zirkler, “A class of invariant consistent tests for multivariate normality,” Communications in Statistics—Theory and Methods, vol. 19, no. 10, pp. 3595–3618, 1990. View at Publisher · View at Google Scholar
  24. A. Trujillo-Ortiz, R. Hernandez-Walls, K. Barba-Rojo, and L. Cupul-Magana, HZmvntest: Henze-Zirkler's Multivariate Normality Test, 2007.
  25. R. B. Agostino and M. A. Stephen, Goodness-of-Fit Techniques, Marcel Dekker, New York, NY, USA, 1986.
  26. I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes, Dover publication, New York, NY, USA, 1996.