Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013, Article ID 104848, 9 pages
http://dx.doi.org/10.1155/2013/104848
Research Article

Direction-of-Arrival Estimation of Closely Spaced Emitters Using Compact Arrays

1Department of Signals and Systems, Chalmers University of Technology, 412 96 Gothenburg, Sweden
2School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
3Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576

Received 14 May 2012; Accepted 1 November 2012

Academic Editor: Charles Bunting

Copyright © 2013 Hoi-Shun Lui and Hon Tat Hui. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Performance evaluation of direction-of-arrival (DOA) estimation algorithms has continuously drawn significant attention in the past years. Most previous studies were conducted under the situation that antenna element separation is about half wavelength in order to avoid the appearance of grating lobes. On the other hand, recent developments in wireless communications have favoured the use of portable devices that utilize compact arrays with antenna element separations of less than half wavelength. Performance evaluation of DOA estimation algorithms employing compact arrays is an important and fundamental issue, but it has not been fully studied. In this paper, the performance of the matrix pencil method (MPM) that applies to DOA estimations is investigated through Monte Carlo simulations. The results show that closely spaced emitters can be accurately resolved using linear compact array with an array aperture as small as around half wavelength.