Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013 (2013), Article ID 142602, 16 pages
http://dx.doi.org/10.1155/2013/142602
Research Article

Analysis of Moving Object Imaging from Compressively Sensed SAR Data in the Presence of Dictionary Mismatch

1Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada M5B 2K3
2Department of Electrical Engineering, COMSATS Institute of IT, Wah Campus, Wah 47040, Pakistan

Received 4 April 2013; Revised 4 October 2013; Accepted 6 October 2013

Academic Editor: Krzysztof Kulpa

Copyright © 2013 Ahmed Shaharyar Khwaja et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4655–4666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2346–2356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Zayyani, M. Babaie-Zadeh, and C. Jutten, “Bayesian pursuit algorithm for sparse representation,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '09), pp. 1549–1552, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Schniter, L. C. Potter, and J. Ziniel, “Fast bayesian matching pursuit,” in Proceedings of the 2008 Information Theory and Applications Workshop (ITA '08), pp. 326–332, San Diego, Calif, USA, February 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Ma, “Single-Pixel remote sensing,” IEEE Geoscience and Remote Sensing Letters, vol. 6, no. 2, pp. 199–203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–1195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Shi, J. Lin, X. Chen, F. Qi, D. Liu, and L. Zhang, “UWB echo signal detection with ultra-low rate sampling based on compressed sensing,” IEEE Transactions on Circuits and Systems II, vol. 55, no. 4, pp. 379–383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Ma and F.-X. Le Dimet, “Deblurring from highly incomplete measurements for remote sensing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, pp. 792–802, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Nie, D.-Y. Zhu, and Z.-D. Zhu, “Application of synthetic bandwidth approach in SAR polar format algorithm using the deramp technique,” Progress in Electromagnetics Research, vol. 80, pp. 447–460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. Huang, L. Qu, B. Wu et al., “UWB through-wall imaging based on compressive sensing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 3, pp. 1408–1415, 2010. View at Google Scholar
  14. W. Zhang, M. Amin, F. Ahmad et al., “Ultrawideband impulse radar through-the-wall imaging with compressive sensing,” International Journal of Antennas and Propagation, vol. 2012, Article ID 251497, 11 pages, 2012. View at Publisher · View at Google Scholar
  15. M. Duman and A. Gurbuz, “Performance analysis of compressive-sensing-based through-the-wall imaging with effect of unknown parameters,” International Journal of Antennas and Propagation, vol. 2012, Article ID 405145, 11 pages, 2012. View at Publisher · View at Google Scholar
  16. X. X. Zhu and R. Bamler, “Tomographic SAR inversion by L1-norm regularization—the compressive sensing approach,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 10, pp. 3839–3846, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. X. X. Zhu and R. Bamler, “Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 1, pp. 247–258, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Budillon, A. Evangelista, and G. Schirinzi, “Three-dimensional SAR focusing from multipass signals using compressive sampling,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 1, pp. 488–499, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. T. Alonso, P. López-Dekker, and J. J. Mallorquí, “A novel strategy for radar imaging based on compressive sensing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 12, pp. 4285–4295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. R. K. Raney, “Synthetic aperture imaging radar and moving targets,” IEEE Transactions on Aerospace and Electronic Systems, vol. 7, no. 3, pp. 499–505, 1971. View at Publisher · View at Google Scholar · View at Scopus
  21. J. H. G. Ender, “On compressive sensing applied to radar,” Signal Processing, vol. 90, no. 5, pp. 1402–1414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Wu, M. Xing, C. Qiu, B. Liu, Z. Bao, and T.-S. Yeo, “Motion parameter estimation in the SAR system with low PRF sampling,” IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 3, pp. 450–454, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. S. Khwaja and J. Ma, “Applications of compressed sensing for sar moving-target velocity estimation and image compression,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 8, pp. 2848–2860, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. G. Lin, B. C. Zhang, W. Hong, and Y. R. Wu, “Along-track interferometric SAR imaging based on distributed compressed sensing,” Electronics Letters, vol. 46, no. 12, pp. 858–860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Stojanovic and W. C. Karl, “Imaging of moving targets with multi-static SAR using an overcomplete dictionary,” IEEE Journal on Selected Topics in Signal Processing, vol. 4, no. 1, pp. 164–176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Herman and T. Strohmer, “General deviants: an analysis of perturbations in compressed sensing,” IEEE Journal on Selected Topics in Signal Processing, vol. 4, no. 2, pp. 342–349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity to basis mismatch in compressed sensing,” IEEE Transactions on Signal Processing, vol. 59, no. 5, pp. 2182–2195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. O. Teke, A. C. Gurbuz, and O. Arikan, “A new OMP techniques for sparse recovery,” in Proceedings of the 20th Signal Processing and Communications Applications Conference (SIU '12), Fethiye, Turkey, April 2012.
  29. A. S. Khwaja and X.-P. Zhang, “Compressed sensing based image formation of SAR/ISAR data in presence of basis mismatch,” in Proceedings of the 2012 IEEE International Conference on Image Processing (ICIP '12), Orlando, Fla, USA, 2012.
  30. S. Yu, A. Shaharyar Khwaja, and J. Ma, “Compressed sensing of complex-valued data,” Signal Processing, vol. 92, no. 2, pp. 357–362, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing, CRC Press, Oxford, UK, 1999.
  32. E. G. Larsson and Y. Selén, “Linear regression with a sparse parameter vector,” IEEE Transactions on Signal Processing, vol. 55, no. 2, pp. 451–460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Soumekh, Synthetic Aperture Radar Signal Processing, John Wiley and Sons, 1999.
  34. P. Tichavsky, C. H. Muravchik, and A. Nehorai, “Posterior Cramér-Rao bounds for discrete-time nonlinear filtering,” IEEE Transactions on Signal Processing, vol. 46, no. 5, pp. 1386–1396, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Zayyani, M. Babaie-Zadeh, and C. Jutten, “Bayesian cramer-rao bound for noisy non-blind and blind compressed sensing,” http://arxiv.org/abs/1005.4316.