Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013, Article ID 270845, 7 pages
http://dx.doi.org/10.1155/2013/270845
Research Article

A Modified Vivaldi Antenna for Improved Angular-Dependent Fidelity Property

1Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
2Graduate School, Harbin Institute of Technology, Harbin 150001, China
3Harbin Institute of Technology, Harbin 150001, China

Received 23 December 2012; Revised 10 April 2013; Accepted 4 May 2013

Academic Editor: Renato Cicchetti

Copyright © 2013 Zhi Zeng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Q. Zhang, Y. X. Guo, and M. S. Leong, “A novel multilayer UWB antenna on LTCC,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 9, pp. 3013–3019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. T. A. Vu, M. Z. Dooghabadi, S. Sudalaiyandi et al., “UWB Vivaldi antenna for impulse radio beamforming,” in Proceedings of the 27th Norchip Conference, pp. 1–5, Trondeim, Norway, November 2009.
  3. E. Pancera, T. Zwick, and W. Wiesbeck, “Spherical fidelity patterns of UWB antennas,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 6, pp. 2111–2119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Gross, Frontiers in Antennas: Next Generation Design & Engineering, McGraw-Hill, 2011.
  5. G. Cappelletti, D. Caratelli, R. Cicchetti, and M. Simeoni, “A low profile printed drop-shaped dipole antenna for wide-band wireless applications,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 10, pp. 3526–3535, 2011. View at Publisher · View at Google Scholar
  6. A. A. Gheethan and D. E. Anagnostou, “Dual band-reject UWB antenna with sharp rejection of narrow and closely-spaced bands,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 4, pp. 2071–2076, 2012. View at Publisher · View at Google Scholar
  7. L. Desrumaux, A. Godard, M. Lalande, V. Bertrand, J. Andrieu, and B. Jecko, “An original antenna for transient high power UWB arrays: the Shark antenna,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 8, pp. 2515–2522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. R. Lewis, M. Fassett, and J. Hunt, “A broadband stripline array element,” in Proceedings of the IEEE Antennas and Propagation Symposium Digest, pp. 335–337, Atlanta, Ga, USA, 1974. View at Scopus
  9. Y. Li and A. Chen, “Design and application of Vivaldi antenna array,” in Proceedings of the 8th International Symposium on Antennas, Propagation and EM Theory (ISAPE '08), pp. 267–270, Kunming, China, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Z. Hood, T. Karacolak, and E. Topsakal, “A small antipodal vivaldi antenna for ultrawide-band applications,” IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 656–660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Bai, S. Shi, and D. W. Prather, “Ultra-wideband slot-loaded antipodal Vivaldi antenna array,” in Proceedings of the IEEE International Symposium on Antennas and Propagation (APSURSI '11), pp. 79–81, Spokane, Wash, USA, 2011.
  12. J. Zhang, J. Wang, and W. Hu, “Analysis of UWB signal distortion in transmitting/receiving antenna systems,” in Proceedings of the 9th International Symposium on Antennas Propagation and EM Theory (ISAPE '10), pp. 163–166, Guangzhou, China, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Trott, B. Cummings, R. Cavener, M. Deluca, J. Biondi, and T. Sikina, “Wideband phased array radiator,” in Proceedings of the IEEE International Symposium on Phased Array Systems & Technology, pp. 383–386, Boston, Mass, USA, October 2003.
  14. D. Carsenat and C. Decroze, “UWB antennas beamforming using passive time-reversal device,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 779–782, 2012. View at Publisher · View at Google Scholar
  15. M. A. Elmansouri and D. S. Filipovic, “Pulse distortion and mitigation thereof in spiral antenna-based UWB communication systems,” IEEE Antennas and Wireless Propagation Letters, vol. 59, no. 10, pp. 3863–3871, 2011. View at Google Scholar
  16. G. Quintero, J. F. Zurcher, and A. K. Skrivervik, “System fidelity factor: a new method for comparing UWB antennas,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 7, pp. 2502–2512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Pancera and W. Wiesbeck, “Fidelity based optimization of UWB antenna-radiation for medical applications,” in Proceedings of the IEEE International Symposium on Antennas and Propagation (APSURSI '11), p. 2411, Spokane, Wash, USA, July 2011.