Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013, Article ID 509878, 10 pages
Research Article

A New Technique of Removing Blind Spots to Optimize Wireless Coverage in Indoor Area

1Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Electrical and Electronic Engineering, Faculty of Engineering, National Defence University of Malaysia, 57000 Kuala Lumpur, Malaysia

Received 6 December 2012; Revised 14 February 2013; Accepted 27 March 2013

Academic Editor: Stefano Selleri

Copyright © 2013 A. W. Reza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Blind spots (or bad sampling points) in indoor areas are the positions where no signal exists (or the signal is too weak) and the existence of a receiver within the blind spot decelerates the performance of the communication system. Therefore, it is one of the fundamental requirements to eliminate the blind spots from the indoor area and obtain the maximum coverage while designing the wireless networks. In this regard, this paper combines ray-tracing (RT), genetic algorithm (GA), depth first search (DFS), and branch-and-bound method as a new technique that guarantees the removal of blind spots and subsequently determines the optimal wireless coverage using minimum number of transmitters. The proposed system outperforms the existing techniques in terms of algorithmic complexity and demonstrates that the computation time can be reduced as high as 99% and 75%, respectively, as compared to existing algorithms. Moreover, in terms of experimental analysis, the coverage prediction successfully reaches 99% and, thus, the proposed coverage model effectively guarantees the removal of blind spots.