Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013, Article ID 575848, 6 pages
Research Article

Suppression of Repeat-Intensive False Targets Based on Temporal Pulse Diversity

1School of Electrical and Information Engineering, Xihua University, Chengdu 610039, China
2Department of Communications Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

Received 8 July 2013; Accepted 11 September 2013

Academic Editor: Mandeep Singh Jit Singh

Copyright © 2013 Gang Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper considers the problem of suppressing the repeat-intensive false targets produced by a deception electronic attack (EA) system equipped with a Digital Radio Frequency Memory (DRFM) device. Different from a conventional repeat jammer, this type of jamming intensively retransmits the intercepted signal stored in a DRFM to the victim radar in a very short time-delay interval relative to a radar pulse wide. A multipeak matched-filtering output is then produced other than the merely expected true target. An electronic protection (EP) algorithm based on the space time block code (STBC) is proposed to suppress the adverse effects of this jammer. By transmitting a pulse sequence generated from the STBC in succession and the following cancellation process applied upon the received signal, this algorithm performs successfully in a single antenna system provided that the target models are nonfluctuating or slow fluctuating and the pulse repetition frequency (PRF) is comparatively high. The performance in white and correlated Gaussian disturbance is evaluated by means of Monte Carlo simulations.