Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013 (2013), Article ID 583865, 13 pages
Research Article

Rotating Parabolic-Reflector Antenna Target in SAR Data: Model, Characteristics, and Parameter Estimation

College of Electronic Science and Engineering, National University of Defense Technology, China

Received 22 October 2012; Accepted 3 March 2013

Academic Editor: Gui Gao

Copyright © 2013 Bin Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Parabolic-reflector antennas (PRAs), usually possessing rotation, are a particular type of targets of potential interest to the synthetic aperture radar (SAR) community. This paper is aimed to investigate PRA’s scattering characteristics and then to extract PRA’s parameters from SAR returns, for supporting image interpretation and target recognition. We at first obtain both closed-form and numeric solutions to PRA’s backscattering by geometrical optics (GO), physical optics, and graphical electromagnetic computation, respectively. Based on the GO solution, a migratory scattering center model is at first presented for representing the movement of the specular point with aspect angle, and then a hybrid model, named the migratory/micromotion scattering center (MMSC) model, is proposed for characterizing a rotating PRA in the SAR geometry, which incorporates PRA’s rotation into its migratory scattering center model. Additionally, we in detail analyze PRA’s radar characteristics on radar cross-section, high-resolution range profiles, time-frequency distribution, and 2D images, which also confirm the models proposed. A maximal likelihood estimator is developed for jointly solving the MMSC model for PRA’s multiple parameters by optimization. By exploiting the aforementioned characteristics, the coarse parameter estimation guarantees convergency upon global minima. The signatures recovered can be favorably utilized for SAR image interpretation and target recognition.