Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013, Article ID 785675, 11 pages
http://dx.doi.org/10.1155/2013/785675
Research Article

Study of Propagation Mechanisms in Dynamical Railway Environment to Reduce Computation Time of 3D Ray Tracing Simulator

1XLIM UMR CNRS 7252, SIC Department, University of Poitiers, Bât. SP2MI, Téléport 2, Boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope Cedex, France
2University of Lille Nord de France, and IFSTTAR, LEOST, 59650 Villeneuve D’Ascq, France

Received 22 January 2013; Revised 4 April 2013; Accepted 5 April 2013

Academic Editor: Hon Tat Hui

Copyright © 2013 Siham Hairoud et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Liénard, P. Degauque, and J. M. Molina-Garcia-Pardo, “Wave propagation in tunnels in a MIMO context-a theoretical and experimental study,” Comptes Rendus Physique, vol. 7, no. 7, pp. 726–734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Cocheril, C. Langlais, M. Berbineau, and G. Moniak, “Advantages of simple MIMO schemes for robust or high data rate transmission systems in underground tunnels,” in Proceedings of the 68th IEEE Vehicular Technology Conference (VTC '08), pp. 1–5, Calgary, Canada, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Klemenschits and E. Bonek, “Radio coverage of tunnels by discret antennas: measurements and predictions,” COST 231 TD(95031), 1995.
  4. M. Lienard and P. Degauque, “Propagation in wide tunnels at 2 GHZ: a statistical analysis,” IEEE Transactions on Vehicular Technology, vol. 47, no. 4, pp. 1322–1328, 1998. View at Google Scholar · View at Scopus
  5. Y. P. Zhang, “Novel model for propagation loss prediction in tunnels,” IEEE Transactions on Vehicular Technology, vol. 52, no. 5, pp. 1308–1314, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. H. W. Chang, Y. H. Wu, S. M. Lu, W. C. Cheng, and M. H. Sheng, “Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation—numerical investigation,” Progress in Electromagnetics Research, vol. 97, pp. 159–176, 2009. View at Google Scholar · View at Scopus
  7. S. Y. Reutskiy, “The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides,” Progress in Electromagnetics Research, vol. 82, pp. 203–226, 2008. View at Google Scholar · View at Scopus
  8. P. Bernardi, D. Caratelli, R. Cicchetti, V. Schena, and O. Testa, “A numerical scheme for the solution of the vector parabolic equation governing the radio wave propagation in straight and curved rectangular tunnels,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 10, pp. 3249–3257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. V. Popov and N. Y. Zhu, “Modeling radio wave propagation in tunnels with a vectorial parabolic equation,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 9, pp. 1403–1412, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. K. D. Laakmann and W. H. Steier, “Waveguides: characteristic modes of hallow rectangular dielectric waveguides,” Applied Optics, vol. 15, no. 5, pp. 1334–1340, 1976. View at Google Scholar · View at Scopus
  11. A. G. Emslie, R. L. Lagace, and P. F. Strong, “Theory of the propagation of UHF radio waves in coal mine tunnels,” IEEE Transactions on Antennas and Propagation, vol. 23, no. 2, pp. 192–205, 1975. View at Google Scholar · View at Scopus
  12. I. F. Akyildiz, Z. Sun, and M. C. Vuran, “Signal propagation technics for wireless underground communication networks,” Physical Communication, vol. 2, no. 3, pp. 167–183, 2009. View at Google Scholar
  13. D. G. Dudley and S. F. Mahmoud, “Linear source in a circular tunnel,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 7, pp. 2034–2047, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Dudley, M. Lienard, S. Mahmoud, and P. Degauque, “Wireless propagation in tunnels,” IEEE Transactions on Antennas and Propagation, vol. 49, no. 2, pp. 11–26, 2009. View at Google Scholar
  15. K. Guan, Z. Zhong, R. He, Y. Li, and C. B. Rodriguez, “Propagation mechanism modeling in the near-region of arbitrary cross-section tunnels,” International Journal on Antennas and Propagation, vol. 2012, Article ID 183145, 11 pages, 2012. View at Google Scholar
  16. P. Mariage, M. Lienard, and P. Degauque, “Theoretical and experimental approach of the propagation of high frequency waves in road tunnels,” IEEE Transactions on Antennas and Propagation, vol. 42, no. 1, pp. 75–81, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. T. S. Wang and C. F. Yang, “Simulations and measurements of wave propagations in curved road tunnels for signals from GSM base stations,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 9, pp. 2577–2584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Didascalou, J. Maurer, and W. Wiesbeck, “Subway tunnel guided electromagnetic wave propagation at mobile communications frequencies,” IEEE Transactions on Antennas and Propagation, vol. 49, no. 11, pp. 1590–1596, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Ai, R. He, Z. Zhong et al., “Radio wave propagation scene partitioning for high-speed rails,” International Journal on Antennas and Propagation, vol. 2012, Article ID 815332, 7 pages, 2012. View at Google Scholar
  20. J. Maurer, T. Fugen, M. Porebska, T. Zwick, and W. Wiesbeck, “Ray optical channel model for mobile to mobile communications,” COST, 2100 TD(08430), 2008.
  21. J. Maurer, T. Fugen, T. Schafer, and W. Wiesbeck, “A new inter-vehicle communications (IVC) channel model,” in Proceedings of the IEEE Vehicular Technology Conference (VTC Fall '04), Los Angeles, Calif, USA, September 2004.
  22. J. Maurer, T. Fugen, and W. Wiesbeck, “Narrow-band measurement and analysis of the inter-vehicle transmission channel at 5.2 GHz,” in Proceedings of the IEEE Vehicular Technology Conference (VTC Spring '02), Birmingham, Ala, USA, 2002.
  23. J. P. Rossi and Y. Gabillet, “A mixed ray launching/tracing method for full 3-D UHF propagation modeling and comparison with wide-band measurements,” IEEE Transactions on Antennas and Propagation, vol. 50, no. 4, pp. 517–523, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Rautiainen, R. Hoppe, and G. Wölfle, “Measurements and 3D ray tracing propagation predictions of channel characteristics in indoor environments,” in Proceedings of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '07), Athens, Greece, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. H. W. Son and N. H. Myung, “A new approach to 3-D ray tracing for a microcellular propagation prediction model in urban environments,” Microwave and Optical Technology Letters, vol. 23, no. 3, pp. 159–163, 1999. View at Google Scholar · View at Scopus
  26. G. E. Athanasiadou, A. R. Nix, and J. P. McGeehan, “Ray tracing algorithm for microcellular wideband propagation modelling,” in Proceedings of the IEEE 45th Vehicular Technology Conference (VTC '95), pp. 261–265, Chicago, III, USA, July 1995. View at Scopus
  27. T. Imai, M. Sumi, and T. Taga, “Propagation prediction system for Urban Area Macrocells using ray-tracing methods,” NTT DoCoMo Technical Journal, vol. 6, no. 1, 2000. View at Google Scholar
  28. E. Masson, P. Combeau, Y. Cocheril, M. Berbineau, L. Aveneau, and R. Vauzelle, “Radio wave propagation in arch-shaped tunnels: measurements and simulations by asymptotic methods,” Comptes Rendus Physique, vol. 11, no. 1, pp. 44–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Wolfle, R. Hope, and F. M. Landstorfer, “A fast and enhanced ray optical propagation model for indoor and urban scenarios, based on an intelligent preprocessing of the database,” in Proceedings of the IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC '99), Osaka, Japan, September 1999.
  30. R. Hoppe, P. Wertz, F. M. Landstorfer, and G. Wölfle, “Advanced ray-optical wave propagation modelling for urban and indoor scenarios including wideband properties,” European Transactions on Telecommunications, vol. 14, no. 1, pp. 61–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Imai, “Novel ray-tracing acceleration technique using genetic algorithm for radio propagation prediction,” NTT Technical Review, vol. 6, no. 2, 2008. View at Google Scholar · View at Scopus
  32. M. Shevtsov, A. Soupikov, and A. Kapustin, “Highly parallel fast KD-tree construction for interactive ray tracing of dynamic scenes,” Computer Graphics Forum, vol. 26, no. 3, pp. 395–404, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Kopta, A. Kensler, T. Ize, J. Spjut, E. Brunvand, and A. Davis, “Fast effective bvh updates for dynamic ray-traced scenes using tree rotations,” Tech. Rep. UUCS 11-002, University of Utah, 2011. View at Google Scholar
  34. F. A. Agelet, F. P. Fontán, and A. Formella, “Fast ray tracing for microcellular and indoor environments,” IEEE Transactions on Magnetics, vol. 33, no. 2, pp. 1484–1487, 1997. View at Google Scholar · View at Scopus
  35. M. Kimpe, H. Leib, O. Maquelin, and T. H. Szymanski, “Fast computational techniques for indoor radio channel estimation,” IEEE Computing in Science & Engineering, vol. 1, no. 1, pp. 31–41, 1999. View at Google Scholar
  36. F. Escarieu, Y. Pousset, L. Aveneau, and R. Vauzelle, “Outdoor and indoor channel characterization by a 3D simulation software,” in Proceedings of the 12th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '01), pp. B105–B111, Boston, Mass, USA, October 2001. View at Scopus
  37. F. Mora and L. Aveneau, Optimised Scanning of a Visibility Graph Data Structure for Efficient Ray- Tracing, European Centre for Women and Technology, Paris, France, 2005.
  38. P. Combeau, L. Aveneau, R. Vauzelle, and Y. Pousset, “Efficient 2-D ray-tracing method for narrow and wideband channel characterisation in microcellular configurations,” IEE Proceedings Microwaves, Antennas and Propagation, vol. 153, no. 6, pp. 502–509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Aveneau, Y. Pousset, R. Vauzelle, and M. Mériaux, “Development and evaluations of physical and computer optimizations for the UTD 3d model,” in Proceedings of the Millennium Conference on Antennas & Propagation (AP ’00), Davos, Switzerland, April 2000.
  40. E. Masson, P. Combeau, M. Berbineau, R. Vauzelle, and Y. Pousset, “Radio wave propagation in arched cross section tunnels—simulations and measurements,” Journal of Communications, vol. 4, no. 4, pp. 276–283, 2009. View at Google Scholar · View at Scopus
  41. S. H. Chen and S. K. Jeng, “SBR image approach for radio wave propagation in tunnels with and without traffic,” IEEE Transactions on Vehicular Technology, vol. 45, no. 3, pp. 570–578, 1996. View at Google Scholar · View at Scopus
  42. Y. Chartois, Y. Pousset, and R. Vauzelle, “A spatio-temporal radio channel characterization with a 3D ray tracing propagation model in urban environment,” in Proceedings of the IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '04), pp. 2431–2435, Barcelona, Spain, September 2004. View at Scopus
  43. P. Carlos, P. Yannis, V. Rodolphe, and C. Pierre, “Sensitivity of the MIMO channel characterization to the modeling of the environment,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 4, pp. 1218–1227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. P. A. Bello, “Characterization of randomly time-variant linear channels,” IEEE Transactions on Communications, vol. 11, no. 4, pp. 360–393, 1963. View at Google Scholar
  45. D. Parson, The Mobile Radio Propagation Channel, Wiley-Pentech, 1992.
  46. T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas and Propagation Magazine, vol. 45, no. 3, pp. 51–82, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. D. J. Cichon, T. C. Becker, and W. Wiesbeck, “Determination of time-variant radio links in high-speed train tunnels by ray optical modeling,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, pp. 508–511, June 1995. View at Scopus
  48. F. Fushini and G. Falciasecca, “A mixed rays-modes approach to the propagation in real road and railway tunnels,” IEEE Transactions on Antennas and Propagation, vol. 2, no. 60, pp. 508–511, 2012. View at Google Scholar
  49. A. Hrovat, G. Kandus, and T. Javornik, “Impact of tunnel geometry and its dimensions on path loss at UHF frequency band,” in Proceedings of the International Conference on Circuits, Systems, Communications & Computers (SysCon '11), pp. 253–258, Montreal, Canada, 2011.