Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013 (2013), Article ID 847859, 7 pages
http://dx.doi.org/10.1155/2013/847859
Research Article

Generation of OAM Radio Waves Using Circular Vivaldi Antenna Array

State Key Laboratory of Microwave and Digital Communication, Tsinghua University, Beijing 100084, China

Received 5 March 2013; Accepted 10 April 2013

Academic Editor: Yuan Yao

Copyright © 2013 Changjiang Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Schwinger, L. L. DeRaad, K. A. Milton, and W. Tsai, Classical Electrodynamics, Perseus Books, Reading, Mass, USA, 1998.
  2. M. K. Ayub, S. Ali, and J. T. Mendonca, “Phonons with orbital angular momentum,” Physics of Plasmas, vol. 18, no. 10, Article ID 102117, 6 pages, 2011. View at Publisher · View at Google Scholar
  3. J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proceedings of the Royal Society of London A, vol. 82, pp. 560–567, 1909. View at Google Scholar
  4. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Physical Review, vol. 50, no. 2, pp. 115–125, 1936. View at Google Scholar
  5. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Wo-erdman, “Optical angular momentum of light and the transformation of Laguerre-Gauss laser modes,” Physical Review A, vol. 45, no. 11, pp. 8185–8189, 1992. View at Google Scholar
  6. L. Allen and M. J. Padgett, “Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Optics Communications, vol. 184, no. 1, pp. 67–71, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. J. H. Shapiro, S. Guha, and B. I. Erkmen, “Ultimate channel capacity of free-space optical communications,” Journal of Optical Networking, vol. 4, pp. 501–516, 2005. View at Publisher · View at Google Scholar
  8. I. B. Djordjevic, “Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation,” Optics Express, vol. 19, no. 15, pp. 14277–14289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Awaji, N. Wada, and Y. Toda, “Demonstration of spatial mode division multiplexing using Laguerre–Gaussian mode beam in telecom-wavelength,” in Proceedings of the IEEE Photonics Conference, 2010.
  10. J. Wang, J. Y. Yang, I. M. Fazal et al., “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nature Photonics, vol. 6, pp. 488–496, 2012. View at Publisher · View at Google Scholar
  11. B. Thide, H. Then, J. Sjoholm et al., “Utliliza-tion of photon orbital angular momentum in the low frequency radio domain,” Physical Review Letters, vol. 99, no. 8, Article ID 087701, 5 pages, 2007. View at Publisher · View at Google Scholar
  12. F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New Journal of Physics, vol. 14, Article ID 033001, 2012. View at Publisher · View at Google Scholar
  13. O. Edfos and A. J. Johansson, “Is orbital angular momentum (OAM) based radio communication an unexploited area?” IEEE Transactions on Antennas and Propagation, vol. 60, no. 2, pp. 1126–1131, 2012. View at Google Scholar
  14. S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman et al., “Orbital angular momentum in radio—a system study,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 2, pp. 565–572, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Tennant and B. Allen, “Generation of OAM radio waves using circular time-switched array antenna,” Electronics Letters, vol. 48, no. 21, 2012. View at Google Scholar