Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013, Article ID 931527, 15 pages
Research Article

MIMO Exploitation of 3D Multipath Statistics in a Heterogeneous LTE-Advanced Network

Communication Systems & Networks Group, Department of Electrical & Electronic Engineering, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK

Received 31 March 2013; Revised 12 June 2013; Accepted 14 June 2013

Academic Editor: Yan Zhang

Copyright © 2013 Zuhanis Mansor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper analyses the impact of 3D multipath in an LTE-Advanced heterogeneous network. The impact of the base station array configuration is considered in both the azimuth and elevation planes. Spatial and temporal multipath statistics are generated for example macro- and picocellular base stations, and these are combined with appropriately oriented complex polarimetric antenna patterns. The resulting wideband channels are then passed to an LTE-Advanced physical layer simulator. The optimal spatial multiplexing mode is determined by computing the throughput using the received bit mutual information rate for all modulation and coding schemes. The fastest link speed for each user is identified given a packet error rate threshold of 10%. Results show that RMS angle spread statistics and the base station MIMO array configuration strongly influence user performance in an LTE-A network. The deployment of macrocellular vertical arrays is shown to significantly degrade network performance. In contrast, the elevation angle spread is found to be far greater in picocells, and this allows vertical arrays to be applied to produce compact high performance picobase stations.