Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013, Article ID 935609, 10 pages
Research Article

Performance Analysis of a Two-Hop MIMO Mobile-to-Mobile via Stratospheric-Relay Link Employing Hierarchical Modulation

1Department of Information and Communication Systems Engineering, University of the Aegean, 83200 Karlovassi, Samos, Greece
2Department of Digital Systems, University of Piraeus, 80 Karaoli & Dimitriou Street, 18534 Piraeus, Greece

Received 12 March 2013; Revised 21 May 2013; Accepted 27 May 2013

Academic Editor: Fernando Pérez Fontán

Copyright © 2013 Nikolaos Nomikos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Next generation wireless communication networks intend to take advantage of the integration of terrestrial and aerospace infrastructures. Besides, multiple-input multiple-output (MIMO) architecture is the key technology, which has brought the wireless gigabit vision closer to reality. In this direction, high-altitude platforms (HAPs) could act as relay stations in the stratosphere transferring information from an uplink to a downlink MIMO channel. This paper investigates the performance of a novel transmission scheme for the delivery of mobile-to-mobile (M-to-M) services via a stratospheric relay. It is assumed that the source, relay, and destination nodes are equipped with multiple antennas and that amplify-and-forward (AF) relaying is adopted. The performance is analyzed through rigorous simulations in terms of the bit-error rate (BER) by using a recently proposed 3D geometry-based reference model in spatially correlated flat-fading MIMO channels, employing a hierarchical broadcast technique and minimum mean square error (MMSE) receivers.