Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013, Article ID 981281, 11 pages
http://dx.doi.org/10.1155/2013/981281
Research Article

Propagation and Wireless Channel Modeling Development on Wide-Sense Vehicle-to-X Communications

State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

Received 22 June 2013; Revised 6 September 2013; Accepted 11 September 2013

Academic Editor: César Briso Rodríguez

Copyright © 2013 Wenyi Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Vaa, M. Penttinen, and I. Spyropoulou, “Intelligent transport systems and effects on road traffic accidents: state of the art,” IET Intelligent Transport Systems, vol. 1, no. 2, pp. 81–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. IEEE Std. 802. 11-2007, “Part 11: weireless lAN medium access control (MAC) and physical layer (PHY) specifications,” IEEE Std. 802. 11, 2007.
  3. ETSI ES 202 663, “Intelligent transport systems, european profile standard on the physical and medium access layer of 5 GHz ITS,” Draft Version 0. 0. 6, October 2009.
  4. U. S. Federal Communications Commission, “Report and order,” Tech. Rep. FCC 03-324, 2003. View at Google Scholar
  5. IEEE Std 1609. 4, “IEEE standard for wireless access in vehicular environments (WAVE)-multi-channel operation,” February 2011.
  6. “IEEE standard for communications-based train control (CBTC) performance and functional requirements,” December 1999.
  7. http://www.uic.asso.fr.
  8. ETSI ETR 300-3 (2000-02), “Terrestrial trunked radio (TETRA), voice plus data (V+D), designers' guide, part 3: Direct Mode Operation (DMO),” 1st edition, 2000.
  9. H. Zhou and B. Luo, “Design and budget analysis of RF receiver of 5.8 GHz ETC reader,” in Proceedings of the International Conference on Communication Technology (ICCT '10), pp. 354–357, Nanjing, China, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. ERTMS/ETCS—Class 1, FFFIS for Eurobalise. Subset-026, Issue 2. 4. 1. September 2007.
  11. C. R. García, A. Lehner, T. Strang, and K. Frank, “Channel model for train to train communication using the 400 MHz band,” in Proceedings of the 2008 IEEE 67th Vehicular Technology Conference, pp. 3082–3086, Singapore, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. 1st Year Research Report on Railroad Wireless Communication System, Korea Railroad Research Institute, Seoul, Republic of Korea, 2011.
  13. K. Guan, Z. Zhong, and B. Ai, “Assessment of LTE-R using high speed railway channel model,” in Proceedings of the 3rd International Conference on Commnunications and Mobile Coputing, pp. 461–464, Qingdao, China, 2011.
  14. P. Tiberg, GSM-Railway, Yesterday, Today and Tomorrow, Nokia Siemens Networks, Banebranchen, Copenhagen, Denmark, 2009.
  15. http://www.uic.org.
  16. R. Y. Kim, J. S. Kwak, and H. C. Hwang, “Technical challenges of railroad communications using long term evolution,” in Proceedings of the IEEE International Conference on ICT Convergence (ICTC '12), pp. 1–2, Jeju, Repablic of Korea, 2012.
  17. M. Aguado, I. Liedo Samper, M. Berbineau, and E. Jacob, “4G communication technologies for train to ground communication services: LTE versus WIMAX, a simulation study,” in Proceedings of the 9th World Congress on Railway Research, pp. 1–10, Lille, France, 2011.
  18. T. Gao and B. Sun, “A high-speed railway mobile communication system based on LTE,” in Proceedings of the International Conference on Electronics and Information Engineering (ICEIE '10), pp. 414–417, Kyoto, Japan, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Zhang, Z. Tan, Z. Zhong, and Y. Kong, “A multi-mode multi-band and multi-system-based access architecture for high-speed railways,” in Proceedings of the IEEE 72nd Vehicular Technology Conference Fall (VTC '10), pp. 1–5, Ottawa, Canada, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. UIC, GSM-R Procurement Guide, Union Internationale des Chemins de Fer, Paris, France, 2007.
  21. O. Andre, LTE and Its Applications in Railways, Networks and the New Economy, Alcatel-Lucent, Cambridge, UK, 2010.
  22. “Huawei eyes European market,” September 2011, http://www.railwaygazette.com/news/business/single-view/view/huawei-eyes-european-market.html.
  23. A. F. Molisch, F. Tufvesson, J. Karedal, and C. F. Mecklenbräuker, “A survey on vehicle-to-vehicle propagation channels,” IEEE Wireless Communications, vol. 16, no. 6, pp. 12–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Ai, R. He, Z. Zhong et al., “Radio wave propagation scene partitioning for high-speed rails,” International Journal on Antennas and Propagation, vol. 2012, Article ID 815332, 7 pages, 2012. View at Publisher · View at Google Scholar
  25. L. Cheng, B. E. Henty, D. D. Stancil, F. Bai, and P. Mudalige, “Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 8, pp. 1501–1516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Karedal, F. Tufvesson, N. Czink et al., “A geometry-based stochastic MIMO model for vehicle-to-vehicle communications,” IEEE Transactions on Wireless Communications, vol. 8, no. 7, pp. 3646–3657, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Guan, Z. Zhong, B. Ai, and C. Briso, “Propagation mechanism analysis before the break point inside tunnels,” in Proceedings of the IEEE 74th Vehicular Technology Conference, pp. 1–5, San Francisco, Calif, USA, 2011.
  28. K. Guan, Z. Zhong, B. Ai, and C. Briso-Rodríguez, “Propagation mechanism modelling in the near region of circular tunnels,” IET Microwaves, Antennas and Propagation, vol. 6, no. 3, pp. 355–360, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Guan, Z. Zhong, B. Ai, and C. Briso-Rodríguez, “Modeling of the division point of different propagation mechanisms in the near-region within arched tunnels,” Wireless Personal Communications, vol. 68, no. 3, pp. 489–505, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Guan, Z. Zhong, B. Ai, R. He, Y. Li, and C. Briso, “Propagation mechanism modeling in the near-region of arbitrary cross-sectional tunnels,” International Journal of Antennas and Propagation, vol. 2012, Article ID 183145, 11 pages, 2012. View at Publisher · View at Google Scholar
  31. K. Guan, Z. Zhong, B. Ai, and C. Briso-Rodríguez, “Research of propagation characteristics of break point; Near zone and far zone under operational subway condition,” in Proceedings of the 6th International Wireless Communications and Mobile Computing Conference (IWCMC '10), pp. 114–118, Caen, France, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Guan, Z. Zhong, B. Ai, and C. Briso-Rodríguez, “Measurement and modeling of subway near shadowing phenomenon,” in Proceedings of the 5th International ICST Conference on Communications and Networking in China (ChinaCom '10), pp. 1–5, Beijing, China, August 2010. View at Scopus
  33. K. Guan, Z. Zhong, B. Ai, and C. Briso, “Novel hybrid propagation model inside tunnels,” in Proceedings of the IEEE 75th Vehicular Technology Conference, pp. 1–5, Yokohama, Japan, 2012.
  34. K. Guan, Z. Zhong, B. Ai et al., “Complete propagation model structure inside tunnels,” Progress in Electromagnetics Research, vol. 141, pp. 711–726, 2013. View at Google Scholar
  35. K. Guan, Z. Zhong, B. Ai, R. He, and C. Briso-Rodriguez, “Five-zone propagation model for large-size vehicles inside tunnels,” Progress in Electromagnetics Research, vol. 138, pp. 389–405, 2013. View at Google Scholar
  36. B. Chen and Z. Zhong, “Geometry-based stochastic modeling for MIMO channel in high-speed mobile scenario,” International Journal of Antennas and Propagation, vol. 2012, Article ID 184682, 6 pages, 2012. View at Publisher · View at Google Scholar
  37. K. Guan, Z. D. Zhong, B. Ai, and T. Kuerner, “Semi-deterministic propagation modeling for high-speed railway,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 789–792, 2013. View at Google Scholar
  38. P. Almers, E. Bonek, A. Burr et al., “Survey of channel and radio propagation models for wireless MIMO systems,” Eurasip Journal on Wireless Communications and Networking, vol. 2007, Article ID 19070, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Abbas, J. Karedal, F. Tufvesson, A. Paier, L. Bernadó, and A. F. Molisch, “Directional analysis of vehicle-to-vehicle propagation channels,” in Proceedings of the IEEE 73rd Vehicular Technology Conference (VTC '11), pp. 1–5, Budapest, Hungry, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Nuckelt, T. Abbas, F. Tufvesson, C. Mecklenbräuker, L. Bernadó, and T. Kürner, “Comparison of ray tracing and channel-sounder measurements for vehicular communications,” in Proceedings of the IEEE 77th Vehicular Technology Conference (VTC '13), pp. 1–5, Dresden, Germany, June 2013.
  41. L. Liu, C. Tao, J. Qiu et al., “Position-based modeling for wireless channel on high-speed railway under a viaduct at 2.35 GHz,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 4, pp. 834–845, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Chen, Z. Zhong, and B. Ai, “Stationarity intervals of time-variant channel in high speed railway scenario,” China Communications, vol. 9, pp. 64–70, 2012. View at Google Scholar
  43. H. Wei, Z. Zhong, K. Guan, and B. Ai, “Path loss models in viaduct and plain scenarios of the high-speed railway,” in Proceedings of the 5th International ICST Conference on Communications and Networking in China (ChinaCom '10), pp. 1–5, Beijing, China, August 2010. View at Scopus
  44. K. Guan, Z. Zhong, J. I. Alonso, and C. Briso-Rodríguez, “Measurement of distributed antenna systems at 2.4 GHz in a realistic subway tunnel environment,” IEEE Transactions on Vehicular Technology, vol. 61, no. 2, pp. 834–837, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Guo, J. Zhang, C. Tao, L. I. U. Liu, and L. Tian, “Propagation characteristics of wideband high-speed railway channel in viaduct scenario at 2. 35 GHz,” Journal of Modern Transportation, vol. 20, no. 4, pp. 206–212, 2012. View at Google Scholar
  46. G. Acosta-Marum and M. A. Ingram, “Six time- and frequency- selective empirical channel models for vehicular wireless LANs,” IEEE Vehicular Technology Magazine, vol. 2, no. 4, pp. 4–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. IST WINNER II D1. 1. 2, “WINNER II channel models,” http://www.ist-winner.org/WINNER2-Deliverables/D1.1.2v1.1.pdf.
  48. J. Maurer, T. Fügen, and W. Wiesbeck, “Narrow-band measurement and analysis of the inter-vehicle transmission channel at 5.2 GHz,” in Proceedings of the IEEE 55th Vehicular Technology Conference (VTC '02), pp. 1274–1278, Birmingham, UK, May 2002. View at Scopus
  49. J. Maurer, T. M. Schäfer, and W. Wiesbeck, “A realistic description of the environment for inter-vehicle wave propagation modelling,” in Proceedings of the IEEE 54th Vehicular Technology Conference (VTC '01), pp. 1437–1441, Atlantic, NJ, USA, October 2001. View at Scopus
  50. J. Maurer, T. Fügen, T. Schäfer, and W. Wiesbeck, “A new inter-vehicle communications (IVC) channel model,” in Proceedings of the IEEE 60th Vehicular Technology Conference (VTC '04), pp. 9–13, Los Angeles, Calif, USA, September 2004. View at Scopus
  51. J. W. McKown and R. L. Hamilton Jr., “Ray tracing as a design tool for radio networks,” IEEE Network, vol. 5, no. 6, pp. 27–30, 1991. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Maltsev, R. Maslennikov, A. Lomayev, A. Sevastyanov, and A. Khoryaev, “IEEE 802. 11-09/0431r0,” April 2009.
  53. J. Nuckelt, M. Schack, and T. Kürner, “Deterministic and stochastic channel models implemented in a physical layer simulator for Car-to-X communications,” Advances in Radio Science, vol. 9, pp. 165–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Guan, Z. Zhong, B. Ai, and T. Kurner, “Deterministic propagation modeling for the realistic high-speed railway environment,” in Proceedings of the IEEE 77th Vehicular Technology Conference (VTC '13), pp. 1–5, Dresden, Germany, 2013.
  55. W. C. Jakes, Ed., Microwave Mobile Communications, Wiley, New York, NY, USA, 1974.
  56. A. S. Akki and F. Haber, “A statistical model of mobile-to-mobile land communication channel,” IEEE Transactions on Vehicular Technology, vol. 35, no. 1, pp. 2–7, 1986. View at Google Scholar · View at Scopus
  57. A. S. Akki, “Statistical properties of mobile-to-mobile land communication channels,” IEEE Transactions on Vehicular Technology, vol. 43, no. 4, pp. 826–831, 1994. View at Publisher · View at Google Scholar · View at Scopus
  58. F. Vatalaro, “Doppler spectrum in mobile-to-mobile communications in the presence of three-dimensional multipath scattering,” IEEE Transactions on Vehicular Technology, vol. 46, no. 1, pp. 213–219, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. P. A. Bello, “Characterization of randomly time-variant linear channels,” IEEE Transactions on Communications, vol. 11, pp. 360–393, 1963. View at Google Scholar
  60. G. Acosta and M. A. Ingram, “Model development for the wideband expressway vehicle-to-vehicle 2.4 GHz channel,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '06), pp. 1283–1288, Las Vegas, Nev, USA, April 2006. View at Scopus
  61. G. Acosta-Marum and M. A. Ingram, “Six time- and frequency-selective empirical channel models for vehicular wireless LANs,” IEEE Vehicular Technology Magazine, vol. 2, no. 4, pp. 4–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Wang, X. Cheng, and D. Laurenson, “Vehicle-to-vehicle channel modeling and measurements: recent advances and future challenges,” IEEE Communications Magazine, vol. 47, no. 11, pp. 96–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Chelli and M. Pätzold, “A non-stationary MIMO vehicle-to-vehicle channel model derived from the geometrical street model,” in Proceedings of the IEEE 74th Vehicular Technology Conference (VTC '11), pp. 1–6, San Francisco, Calif, USA, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Kürner and M. Schack, “3D ray-tracing embedded into an integrated simulator for car-to-X communications,” in Proceedings of the 20th URSI International Symposium on Electromagnetic Theory (EMTS '10), pp. 880–882, Berlin, Germany, August 2010. View at Publisher · View at Google Scholar · View at Scopus