Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2014, Article ID 164107, 11 pages
http://dx.doi.org/10.1155/2014/164107
Research Article

On the Suppression Band and Bandgap of Planar Electromagnetic Bandgap Structures

Electrical and Computer Engineering Department, University of Waterloo, Waterloo, ON, Canada

Received 17 June 2013; Revised 16 September 2013; Accepted 19 September 2013; Published 2 January 2014

Academic Editor: Stefano Selleri

Copyright © 2014 Baharak Mohajer-Iravani and Omar M. Ramahi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Müller and D. Josip, “Integrated capacitor using LTCC,” in Proceedings of the Microtech Conference, Manchester, UK, January 2002.
  2. B. Mohajer-Iravani and O. M. Ramahi, “Miniaturized wideband plannar electromagnetic bandgap structures using high-k dielectrics,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, pp. 2921–2924, Honolulu, Hawaii, USA, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Mohajer-Iravani and O. M. Ramahi, “EMI suppression in microprocessor packages using miniaturized electromagnetic bandgap structures with high-k dielectrics,” in Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, pp. 1–4, Honolulu, Hawaii, USA, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Mohajer-Iravani and O. M. Ramahi, “Suppression of EMI and electromagnetic noise in packages using embedded capacitance and miniaturized electromagnetic bandgap structures with high-k dielectrics,” IEEE Transactions on Advanced Packaging, vol. 30, no. 4, pp. 776–788, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Mohajer-Iravani and O. M. Ramahi, “Design of EBG structures based on wideband circuit model,” IEEE Transactions on Advanced Packaging, vol. 33, no. 1, pp. 169–179, 2010. View at Google Scholar
  6. B. Mohajer-Iravani and O. M. Ramahi, “Radiating emissions from the planar electromagnetic bandgap (EBG) structures,” in Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, pp. 780–783, Fort Lauderdale, Fla, USA, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Qin, O. M. Ramahi, and V. Granatstein, “Novel planar electromagnetic bandgap structures for mitigation of switching noise and EMI reduction in high-speed circuits,” IEEE Transactions on Electromagnetic Compatibility, vol. 49, no. 3, pp. 661–669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. O. M. Ramahi, V. Subramanian, and B. Archambeault, “Simple and efficient finite-difference frequency-domain algorithm for study and analysis of power plane resonance and simultaneous switching noise in printed circuit boards and chip packages,” IEEE Transactions on Advanced Packaging, vol. 26, no. 2, pp. 191–198, 2003. View at Google Scholar
  9. J. Choi, D. G. Kam, D. Chung et al., “Near-field and far-field analyses of alternating impedance electromagnetic bandgap (AI-EBG) structure for mixed-signal applications,” IEEE Transactions on Advanced Packaging, vol. 30, no. 2, pp. 180–190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Y.-W. Huang, T.-K. Wang, and T.-L. Wu, “Design and modelling of miniaturized bandgap structure for wideband GHz-noise suppression based on LTCC technology,” IEEE Transactions on Advanced Packaging, vol. 33, no. 3, pp. 630–638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T.-L. Wu, H.-H. Chuang, and T.-K. Wang, “Overview of power integrity solutions on package and PCB: decoupling and EBG isolation,” IEEE Transactions on Electromagnetic Compatibility, vol. 52, no. 2, pp. 346–356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. T.-L. Wu, Y.-H. Lin, T.-K. Wang, C.-C. Wang, and S.-T. Chen, “Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 9, pp. 2935–2942, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Mohajer-Iravani, S. Shahparnia, and O. M. Ramahi, “Coupling reduction in enclosures and cavities using electromagnetic band gap structures,” IEEE Transactions on Electromagnetic Compatibility, vol. 48, no. 2, pp. 292–303, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Remski, “Analysis of photonic bandgap surfaces using Ansoft HFSS,” Microwave Journal, vol. 43, no. 9, pp. 190–198, 2000. View at Google Scholar · View at Scopus
  15. Ansoft Corporation, “High Frequency Structure Simulator (HFSS),” Pittsburgh, Pa, USA.
  16. L. Brillouin, Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, McGraw-Hill, New York, NY, USA, 1946.
  17. B. Mohajer-Iravani, Electromagnetic interference reduction using electromagnetic bandgap structures in packages, enclosures, cavities, and antennas [Ph.D. dissertation], Department of Electrical and Computer Engineering, University of Maryland, College Park, Md, USA, 2007.
  18. D. M. Pozar, Microwave Engineering, Addison-Wesley, Reading, Mass, USA, 1990.
  19. B. Mohajer-Iravani and O. M. Ramahi, “Reactive power radiated from the planar electromagnetic bandgap structures, a source of EMI in high speed packages,” in Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, pp. 1840–1843, Spokane, Wash, USA, July 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. A. Balanis, Antenna Theory Analysis and Design, John Wiley & Sons, New York, NY, USA, 1997.