Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2014, Article ID 172924, 9 pages
http://dx.doi.org/10.1155/2014/172924
Research Article

A Temporal Millimeter Wave Propagation Model for Tunnels Using Ray Frustum Techniques and FFT

1Department of Electronic Engineering, Sogang University, 1 Sinsu-dong, Mapo-gu, Seoul 121-742, Republic of Korea
2Department of Computer Science, Inha Technical College, 100 Inha-ro, Nam-gu, Incheon 402-752, Republic of Korea
3Radio Technology Group, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700, Republic of Korea

Received 14 November 2013; Revised 20 February 2014; Accepted 7 March 2014; Published 7 April 2014

Academic Editor: Felipe Cátedra

Copyright © 2014 Choonghyen Kwon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. S. de Adana, O. G. Blanco, I. G. Diego, J. P. Arriaga, and M. F. Cátedra, “Propagation model based on ray tracing for the design of personal communication systems in indoor environments,” IEEE Transactions on Vehicular Technology, vol. 49, no. 6, pp. 2105–2112, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Zhou, Z. Pan, J. Hu, J. Shi, and X. Mo, “Broadband wireless communications on high speed trains,” in Proceedings of the 20th Annual Wireless and Optical Communications Conference (WOCC '11), pp. 1–6, Newark, NJ, USA, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Kurner, D. J. Cichon, and W. Wiesbeck, “Concepts and results for 3D digital terrain-based wave propagation models,” IEEE Journal on Selected Areas in Communications, vol. 11, no. 7, pp. 1002–1012, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. M. F. Cátedra, J. Pérez, F. S. de Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas and Propagation Magazine, vol. 40, no. 2, pp. 15–28, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. H.-W. Son and N.-H. Myung, “A deterministic ray tube method for microcellular wave propagation prediction model,” IEEE Transactions on Antennas and Propagation, vol. 47, no. 8, pp. 1344–1350, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Yun, Z. Zhang, and M. F. Iskander, “A ray-tracing method based on the triangular grid approach and application to propagation prediction in urban environments,” IEEE Transactions on Antennas and Propagation, vol. 50, no. 5, pp. 750–758, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. J.-K. Bang, B.-C. Kim, S.-H. Suk, K.-S. Jin, and H.-T. Kim, “Time consumption reduction of ray tracing for RCS prediction using efficient grid division and space division algorithms,” Journal of Electromagnetic Waves and Applications, vol. 21, no. 6, pp. 829–840, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K.-S. Jin, T.-I. Suh, S.-H. Suk, B.-C. Kim, and H.-T. Kim, “Fast ray tracing using a space-division algorithm for RCS prediction,” Journal of Electromagnetic Waves and Applications, vol. 20, no. 1, pp. 119–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. B. Tao, H. Lin, and H. J. Bao, “KD-tree based fast ray tracing for RCS prediction,” Progress in Electromagnetics Research, vol. 81, pp. 329–341, 2008. View at Google Scholar · View at Scopus
  10. N. S. Alvar, A. Ghorbani, and H. Amindavar, “A novel hybrid approach to ray tracing acceleration based on pre-processing & bounding volumes,” Progress in Electromagnetics Research, vol. 82, pp. 19–32, 2008. View at Google Scholar · View at Scopus
  11. H. Suzuki and A. S. Mohan, “Frustum ray tracing technique for high spatial resolution channel characteristic map,” in Proceedings of the IEEE Radio and Wireless Conference (RAWCON '98), pp. 253–256, Colorado Springs, Colo, USA, 1998. View at Publisher · View at Google Scholar
  12. C. Lauterbach, A. Chandak, and D. Manocha, “Interactive sound rendering in complex and dynamic scenes using frustum tracing,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1672–1679, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Kim and H. Lee, “Accelerated three dimensional ray tracing techniques using ray frustums for wireless propagation models,” Progress in Electromagnetics Research, vol. 96, pp. 21–36, 2009. View at Google Scholar · View at Scopus
  14. A. M. Attiya and A. Safaai-Jazi, “Simulation of ultra-wideband indoor propagation,” Microwave and Optical Technology Letters, vol. 42, no. 2, pp. 103–108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication Systems: Modeling, Methodology and Techniques, Springer, 2000.
  16. D. A. McNamara, C. W. I. Pistorius, and J. A. G. Malherbe, The Uniform Geometrical Theory of Diffraction, Artech House, London, UK, 1990.
  17. S. Saunders and A. Aragón-Zavala, Antennas and Propagation for Wireless Communication Systems, John Wiley & Sons, 2007.