Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2014 (2014), Article ID 258682, 7 pages
http://dx.doi.org/10.1155/2014/258682
Research Article

A Dual Band Slotted Patch Antenna on Dielectric Material Substrate

1Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
2Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia

Received 4 October 2013; Accepted 2 November 2013; Published 28 January 2014

Academic Editor: Rezaul Azim

Copyright © 2014 M. Habib Ullah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Cao, B. Yuan, and G. Wang, “A compact multiband open-ended slot antenna for mobile handsets,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 911–914, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M. T. Islam, M. Moniruzzaman, N. Misran, and M. N. Shakib, “Curve fitting based particle swarm optimization for uwb patch Antenna,” Journal of Electromagnetic Waves and Applications, vol. 23, no. 17-18, pp. 2421–2432, 2009. View at Google Scholar · View at Scopus
  3. M. Habib Ullah, M. T. Islam, J. S. Mandeep, N. Misran, and N. Nikabdullah, “A compact wideband antenna on dielectric material substrate for K band,” Electronics and Electrical Engineering, vol. 123, no. 7, pp. 75–79, 2012. View at Google Scholar
  4. M. H. Ullah, M. T. Islam, and J. S. Mandeep, “Printed prototype of a wideband S-shape microstrip patch antenna for Ku/K band applications,” Applied Computational Electromagnetics Society Journal, vol. 28, no. 4, pp. 307–313, 2013. View at Google Scholar
  5. R. Azim, M. T. Islam, and N. Misran, “Printed planar antenna for wideband applications,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 31, no. 8, pp. 969–978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. F. Abutarboush, R. Nilavalan, S. W. Cheung et al., “A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 1, pp. 36–43, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Liu, S. W. Cheung, R. Azim, and M. T. Islam, “A compact circular-ring antenna for ultra-wideband applications,” Microwave and Optical Technology Letters, vol. 53, no. 10, pp. 2283–2288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. K. Rajgopal and S. K. Sharma, “Investigations on ultrawideband pentagon shape microstrip slot antenna for wireless communications,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 5, pp. 1353–1359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. J. Tiang, M. T. Islam, N. Misran, and J. S. Mandeep, “Slot loaded circular microstrip antenna with meandered slits,” Journal of Electromagnetic Waves and Applications, vol. 25, no. 13, pp. 1851–1862, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Li, H. Q. Zhai, G. H. Li, and C. H. Liang, “Design of compact UWB band-notched antenna by means of electromagnetic-bandgap structures,” Electronics Letters, vol. 48, no. 11, pp. 608–609, 2012. View at Google Scholar
  11. J. Yang and A. Kishk, “A novel low-profile compact directional ultra-wideband antenna: the self-grounded Bow-Tie antenna,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 3, pp. 1214–1220, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. M. H. Ullah, M. T. Islam, J. S. Mandeep, and N. Misran, “A new double L shape multiband patch antenna on polymer resin material substrate,” Applied Physics A, vol. 110, no. 1, pp. 199–205, 2013. View at Google Scholar
  13. M. R. Booket, A. Jafargholi, M. Kamyab, H. Eskandari, M. Veysi, and S. M. Mousavi, “Compact multi-band printed dipole antenna loaded with single-cell metamaterial,” IET Microwaves, Antennas and Propagation, vol. 6, no. 1, pp. 17–23, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Y. Sim, F. R. Cai, and Y. P. Hsieh, “Multiband slot-ring antenna with single- and dual-capacitive coupled patch for wireless local area network/worldwide interoperability for microwave access operation,” IET Microwaves, Antennas and Propagation, vol. 5, no. 15, pp. 1830–1835, 2011. View at Google Scholar
  15. D. K. Ntaikos, N. K. Bourgis, and T. V. Yioultsis, “Metamaterial-based electrically small multiband planar monopole antennas,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 963–966, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Rahmat-Samii, L. I. Williams, and R. G. Yaccarino, “UCLA bi-polar planar-near-field antenna-measurement and diagnostics range,” IEEE Antennas and Propagation Magazine, vol. 37, no. 6, pp. 16–35, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. F. A. Ghaffar, M. U. Khalid, K. N. Salama, and A. Shamim, “24-GHz LTCC fractal antenna array SoP with integrated Fresnel lens,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 705–708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. H. Ullah and M. T. Islam, “A compact square loop patch antenna on high dielectric ceramic-PTFE composite material,” Applied Physics A, vol. 113, no. 1, pp. 185–193, 2013. View at Google Scholar
  19. M. Bittera, J. Hallon, and V. Smieško, “Measurement and simulation of field homogenity inside semi-anechoic chamber,” in Measurement Science Review, vol. 3, section 3, pp. 143–146, 2003. View at Google Scholar
  20. M. T. Islam, M. N. Shakib, and N. Misran, “Design analysis of high gain wideband L-probe fed microstrip patch antenna,” Progress in Electromagnetics Research, vol. 95, pp. 397–407, 2009. View at Google Scholar · View at Scopus
  21. B. Li, Y.-Z. Yin, W. Hu, Y. Ding, and Y. Zhao, “Wideband dual-polarized patch antenna with low cross polarization and high isolation,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 427–430, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Moosazadeh, A. M. Abbosh, and Z. Esmati, “Design of compact planar ultrawideband antenna with dual-notched bands using slotted square patch and pi-shaped conductor-backed plane,” IET Microwaves, Antennas and Propagation, vol. 6, no. 3, pp. 290–294, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. M. H. Ullah and M. T. Islam, “Ceramic substrate shrinks patch antenna,” Microwaves and RF, vol. 51, no. 8, pp. 50–54, 2012. View at Google Scholar
  24. C. A. Balanis, Antenna Theory: Analysis and Design, Wiley-Interscience, 3rd edition, 2012.
  25. R. T. Remski, “Analysis of photonic bandgap surfaces using Ansoft HFSS,” Microwave Journal, vol. 43, no. 9, pp. 190–198, 2000. View at Google Scholar · View at Scopus
  26. N. Appannagaari, I. Bardi, R. Edlinger et al., “Modeling phased array antennas in Ansoft HFSS,” in Proceedings of the IEEE International Conference on Phased Array Systems and Technology, pp. 323–326, May 2000. View at Scopus
  27. R. T. Remski, “Analysis of photonic bandgap surfaces using Ansoft HFSS,” Microwave Journal, vol. 43, no. 9, pp. 190–198, 2000. View at Google Scholar · View at Scopus
  28. “IEEE Standard Test Procedures for Antennas,” ANSI/IEEE Standard 149-1979, pp. 94–96, 1979.
  29. G. E. Evans, Antenna Measurement Techniques, vol. 1, Artech House, Norwood, NJ, USA, 1990.
  30. M. H. Ullah, M. T. Islam, and M. R. I. Faruque, “A near-zero refractive index meta-surface structure for antenna performance improvement,” Materials, vol. 6, no. 11, pp. 5058–5068, 2013. View at Google Scholar