Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2014, Article ID 495057, 8 pages
http://dx.doi.org/10.1155/2014/495057
Research Article

An Efficient Algorithm for EM Scattering from Anatomically Realistic Human Head Model Using Parallel CG-FFT Method

Center for Computational Science and Engineering, School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China

Received 1 December 2013; Revised 2 February 2014; Accepted 16 February 2014; Published 24 March 2014

Academic Editor: Gaobiao Xiao

Copyright © 2014 Lei Zhao and Gen Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. F. Harrington, Field Computation by Moment Methods, MacMillan, New York, NY, USA, 1968.
  2. P. M. Goggans, A. A. Kishk, and A. W. Glisson, “Electromagnetic scattering from objects composed of multiple homogeneous regions using a region-by-region solution,” IEEE Transactions on Antennas and Propagation, vol. 42, no. 6, pp. 865–871, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. R. D. Graglia, P. L. E. Uslenghi, and R. S. Zich, “Moment method with isoparametric elements for three-dimensional anisotropic scatterers,” Proceedings of the IEEE, vol. 77, no. 5, pp. 750–760, 1989. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Jarem, “Method-of-moments solution of a parallel-plate waveguide aperture system,” Journal of Applied Physics, vol. 59, no. 10, pp. 3566–3570, 1986. View at Publisher · View at Google Scholar · View at Scopus
  5. D. E. Livesay and K. Chen, “Electromagnetic field induced inside arbitrarily shaped biological bodies,” IEEE Transactions on Microwave Theory and Techniques, vol. 22, no. 12, pp. 1273–1280, 1974. View at Publisher · View at Google Scholar · View at Scopus
  6. T. K. Sarkar and E. Arvas, “An integral equation approach to the analysis of finite microstrip antennas: volume/surface formulation,” IEEE Transactions on Antennas and Propagation, vol. 38, no. 3, pp. 305–312, 1990. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Gan and W. C. Chew, “A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems,” Journal of Electromagnetic Waves and Applications, vol. 9, no. 10, pp. 1339–1357, 1995. View at Google Scholar · View at Scopus
  8. T. J. Cui, “Fast algorithm for electromagnetic scattering by buried 3-D dielectric objects of large size,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 5, pp. 2597–2608, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Zhao and T. J. Cui, “CG-FFT algorithm for EM scattering by small dielectric particles with high permittivity and permeability,” Microwave and Optical Technology Letters, vol. 49, no. 2, pp. 305–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Zhao, T. J. Cui, and W. D. Li, “An efficient algorithm for em scattering by electrically large dielectric objects using MR-QEB iterative scheme and CG-FFT method,” Progress in Electromagnetics Research, vol. 67, pp. 341–355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Yu, R. Mittra, T. Su, Y. Liu, and X. Yang, Parallel Finite Difference Time Domain Method, Artech House, Norwood, Mass, USA, 2006.
  12. W. Yu, X. Yang, Y. Liu et al., “New development of parallel conformal FDTD method in computational electromagnetics engineering,” IEEE Antennas and Propagation Magazine, vol. 53, no. 3, pp. 15–41, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. M. Taboada, M. G. Araujo, F. O. Basteiro, J. L. Rodriguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetic,” Proceedings of the IEEE, vol. 101, no. 2, pp. 350–363, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. O. P. Gandhi, G. Lazzi, and C. M. Furse, “Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1884–1897, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Lazzi and O. P. Gandhi, “Realistically tilted and truncated anatomically based models of the human head for dosimetry of mobile telephones,” IEEE Transactions on Electromagnetic Compatibility, vol. 39, no. 1, pp. 55–61, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. A. K. Lee, H. D. Choi, and J. I. Choi, “Study on SARs in head models with different shapes by age using SAM model for mobile phone exposure at 835 MHz,” IEEE Transactions on Electromagnetic Compatibility, vol. 49, no. 2, pp. 302–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Q.-X. Li and O. P. Gandhi, “Thermal implications of the new relaxed IEEE RF safety standard for head exposures to cellular telephones at 835 and 1900 MHz,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 7, pp. 3146–3154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. T. J. Cui and W. C. Chew, “Fast algorithm for electromagnetic scattering by buried 3-D dielectric objects of large size,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 5, pp. 2597–2608, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Weaver, Applications of Discrete and Continuous Fourier Analysis, John Wiley & Sons, New York, NY, USA, 1983.
  20. P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “Specific absorption rate and temperature increases in the head of a cellular-phone user,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 7, pp. 1118–1126, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. http://www.fcc.gov/fcc-bin/dielec.sh.