Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2014 (2014), Article ID 972584, 6 pages
http://dx.doi.org/10.1155/2014/972584
Research Article

A Hybrid Technique Based on the Combination of Multilevel Fast Multipole Algorithm and the Geometrical Theory of Diffraction

1Newfasant S.L., Avenida Buendia 11, 19005 Guadalajara, Spain
2Deptartment Ciencias de la Computación, Universidad de Alcalá, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain

Received 28 January 2014; Revised 7 April 2014; Accepted 15 April 2014; Published 2 July 2014

Academic Editor: Vincenzo Galdi

Copyright © 2014 María-Jesús Algar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. F. Harrington, Field Computation by Moment Methods, McMillan, New York, NY, USA, 1968.
  2. S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Transactions on Antennas and Propagation, vol. 30, no. 3, pp. 409–412, 1982. View at Google Scholar · View at Scopus
  3. A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Transactions on Antennas and Propagation, vol. 28, no. 5, pp. 593–603, 1980. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Transactions on Antennas and Propagation, vol. 40, no. 6, pp. 634–641, 1992. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. W. C. Chew, J. Jin, E. Michielssen, and J. Song, Eds., Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Norwood, Mass, USA, 2001.
  6. I. González, O. Gutiérrez, F. S. de Adana, and M. F. Cátedra, “Application of multilevel fast multipole method to the analysis of the scattering on complex bodies modeled by NURBS surfaces,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, pp. 1887–1890, Albuquerque, NM, USA, July 2006. View at Publisher · View at Google Scholar
  7. M. Li and W. C. Chew, “Wave-field interaction with complex structures using equivalence principle algorithm,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 1, pp. 130–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Kron, “A set of principles to interconnect the solutions of physical systems,” Journal of Applied Physics, vol. 24, no. 8, pp. 965–980, 1953. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  9. L. Matekovits, V. A. Laza, and G. Vecchi, “Analysis of large complex structures with the synthetic-functions approach,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 9, pp. 2509–2521, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Tasic and B. M. Kolundzija, “Efficient analysis of large scatterers by physical optics driven method of moments,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 8, pp. 2905–2915, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. V. V. S. Prakash and R. Mittra, “Characteristic basis function method: a new technique for efficient solution of method of moments matrix equations,” Microwave and Optical Technology Letters, vol. 36, no. 2, pp. 95–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Lucente, A. Monorchio, and R. Mittra, “An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 4, pp. 999–1007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Freni, P. de Vita, P. a. . Pirinoli, and G. Vecchi, “Fast-factorization acceleration of MoM Compressive domain-decomposition,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 12, pp. 4588–4599, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. E. Garcia, C. Delgado, I. Gonzalez, J. Moreno, and F. Catedra, “Efficient iterative solution of problems using characteristic basis function method combined with multilevel fast multipole algorithm,” in Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP '12), pp. 211–214, Prague, Czech Republic, March 2012. View at Publisher · View at Google Scholar
  15. E. García, C. Delgado, L. Lozano, and F. Cátedra, “Analysis of the parameters of an approach that combines the characteristic basis function method and the multilevel fast multipole,” IET Microwaves, Antennas and Propagation, vol. 5, no. 4, pp. 419–425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. A. McNamara, C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction, Artech House, Norwood, Mass, USA, 1990. View at MathSciNet
  17. G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, vol. 1, Plenum Press, New York, NY, USA, 1970.
  18. U. Jakobus and F. M. Landstorfer, “Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape,” IEEE Transactions on Antennas and Propagation, vol. 43, no. 2, pp. 162–169, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. G. A. Thiele and T. Newhouse, “A hybrid technique for combining moment methods with the geometrical theory of diffraction,” IEEE Transactions on Antennas and Propagation, vol. 23, no. 1, pp. 62–69, 1975. View at Publisher · View at Google Scholar · View at Scopus
  20. P. H. Pathak, “Techniques for high frequency problems,” in Antenna Handbook, Theory, Application and Design, Y. T. Lo and S. W. Lee, Eds., Van Nostrand Reinhold, New York, NY, USA, 1988. View at Google Scholar
  21. G. Farin, Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, Academic Press, Boston, Mass, USA, 1998.
  22. W. C. Chew, J. Jin, E. Michielssen, and J. Song, Eds., Fast and Efficient Algorithms in Computational Electromagnetics, Arctech House, Norwood, Mass, USA, 2001.
  23. L. Lozano, M. J. Algar, I. González, and F. Cátedra, “FASANT: a versatile tool to analyse antennas and propagation in complex environments,” in Proceedings of the 3rd European Conference on Antennas and Propagation, pp. 2088–2092, Berlin, Germany, 2009.