Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2015, Article ID 129823, 18 pages
http://dx.doi.org/10.1155/2015/129823
Research Article

A Simple Quantitative Inversion Approach for Microwave Imaging in Embedded Systems

1University of Naples “Parthenope”, 80143 Naples, Italy
2IREA, National Research Council of Italy, 80124 Naples, Italy

Received 20 February 2015; Accepted 31 May 2015

Academic Editor: Felipe Cátedra

Copyright © 2015 M. Ambrosanio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Pastorino, Ed., EM Applications of Microwave Imaging, John Wiley & Sons, Hoboken, NJ, USA, 2010.
  2. P. M. Meaney, M. W. Fanning, T. Raynolds et al., “Initial clinical experience with microwave breast imaging in women with normal mammography,” Academic Radiology, vol. 14, no. 2, pp. 207–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Geffrin, EM Imagerie microonde: Etude dun scanner a 434 MHz pour des applications biomedicales [Ph.D. thesis], University of Paris XI, Orsay, France, 1995.
  4. C. Gilmore, P. Mojabi, A. Zakaria et al., “A wideband microwave tomography system with a novel frequency selection procedure,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 4, pp. 894–904, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Crocco and A. Litman, “On embedded microwave imaging systems: retrievable information and design guidelines,” Inverse Problems, vol. 25, no. 6, Article ID 065001, 17 pages, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. C. Gilmore and J. LoVetri, “Enhancement of microwave tomography through the use of electrically conducting enclosures,” Inverse Problems, vol. 24, no. 3, Article ID 035008, 21 pages, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. J. Jin, The Finite Element Method in Electromagnetics, Wiley-Interscience, Hoboken, NJ, USA, 2nd edition, 2002. View at MathSciNet
  8. R. Lencrerot, A. Litman, H. Tortel, and J.-M. Geffrin, “Measurement strategies for a confined microwave circular scanner,” Inverse Problems in Science and Engineering, vol. 17, no. 6, pp. 787–802, 2009. View at Publisher · View at Google Scholar
  9. A. Zakaria, C. Gilmore, and J. LoVetri, “Finite-element contrast source inversion method for microwave imaging,” Inverse Problems. An International Journal on the Theory and Practice of Inverse Problems, Inverse Methods and Computerized Inversion of Data, vol. 26, no. 11, Article ID 115010, 115010, 21 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  10. E. A. Attardo, G. Vecchi, and L. Crocco, “Contrast source extended born inversion in noncanonical scenarios via fem modeling,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 9, pp. 4674–4685, 2014. View at Publisher · View at Google Scholar
  11. R. Scapaticci, O. M. Bucci, I. Catapano, and L. Crocco, “Differential microwave imaging for brain stroke followup,” International Journal of Antennas and Propagation, vol. 2014, Article ID 312528, 11 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Bellizzi, O. M. Bucci, and I. Catapano, “Microwave cancer imaging exploiting magnetic nanoparticles as contrast agent,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 9, pp. 2528–2536, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Colton, H. Haddar, and M. Piana, “The linear sampling method in inverse electromagnetic scattering theory,” Inverse Problems, vol. 19, no. 6, pp. S105–S137, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. A. J. Devaney, E. A. Marengo, and F. K. Gruber, “Time-reversal-based imaging and inverse scattering of multiply scattering point targets,” The Journal of the Acoustical Society of America, vol. 118, no. 5, pp. 3129–3138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, Oxford, UK, 2008. View at MathSciNet
  16. M. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 8, pp. 860–874, 1984. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Crocco, I. Catapano, L. Di Donato, and T. Isernia, “The linear sampling method as a way to quantitative inverse scattering,” Institute of Electrical and Electronics Engineers. Transactions on Antennas and Propagation, vol. 60, no. 4, pp. 1844–1853, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  18. L. Di Donato, R. Palmeri, G. Sorbello, T. Isernia, and L. Crocco, “Assessing the capabilities of a new linear inversion method for quantitative microwave imaging,” International Journal of Antennas and Propagation, In press.
  19. P. M. Van den Berg and J. T. Fokkema, “Removal of undesired wavefields related to the casing of a microwave scanner,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 1, pp. 187–192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Bertero and P. Boccacci, Eds., Introduction to Inverse Problems in Imaging, Institute of Physics Publishing, Bristol, UK, 1998. View at Publisher · View at Google Scholar · View at MathSciNet
  21. I. Catapano, L. Crocco, and T. Isernia, “On simple methods for shape reconstruction of unknown scatterers,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 5, pp. 1431–1436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Catapano and L. Crocco, “An imaging method for concealed targets,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 5, pp. 1301–1309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Brignone, G. Bozza, R. Aramini, M. Pastorino, and M. Piana, “A fully no-sampling formulation of the linear sampling method for three-dimensional inverse electromagnetic scattering problems,” Inverse Problems, vol. 25, no. 1, Article ID 015014, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  24. O. M. Bucci and G. Franceschetti, “On the spatial bandwidth of scattered fields,” IEEE Transactions on Antennas and Propagation, vol. 35, no. 12, pp. 1445–1455, 1987. View at Google Scholar · View at Scopus
  25. O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Transactions on Antennas and Propagation, vol. 37, no. 7, pp. 918–926, 1989. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  26. GiD the personal pre and post processor, http://www.gidhome.com/home.
  27. W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method,” IEEE Transactions on Medical Imaging, vol. 9, no. 2, pp. 218–225, 1990. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Di Donato, R. Palmeri, G. Sorbello, T. Isernia, and L. Crocco, “Assessing the capabilities of a new linear inversion method for quantitative microwave imaging,” International Journal of Antennas and Propagation. In press.